MIT OpenCourseWare
http://ocw.mit.edu

18.01 Single Variable Calculus

Fall 2006

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 14: Mean Value Theorem and Inequalities

Mean-Value Theorem

The Mean-Value Theorem (MVT) is the underpinning of calculus. It says:

$$
\begin{aligned}
& \text { If } f \text { is differentiable on } a<x<b \text {, and continuous on } a \leq x \leq b \text {, then } \\
& \qquad \frac{f(b)-f(a)}{b-a}=f^{\prime}(c) \quad(\text { for some } c, a<c<b)
\end{aligned}
$$

Here, $\frac{f(b)-f(a)}{b-a}$ is the slope of a secant line, while $f^{\prime}(c)$ is the slope of a tangent line.

Figure 1: Illustration of the Mean Value Theorem.
Geometric Proof: Take (dotted) lines parallel to the secant line, as in Fig. 1 and shift them up from below the graph until one of them first touches the graph. Alternatively, one may have to start with a dotted line above the graph and move it down until it touches.

If the function isn't differentiable, this approach goes wrong. For instance, it breaks down for the function $f(x)=|x|$. The dotted line always touches the graph first at $x=0$, no matter what its slope is, and $f^{\prime}(0)$ is undefined (see Fig. 22.

Figure 2: Graph of $y=|x|$, with secant line. (MVT goes wrong.)

Interpretation of the Mean Value Theorem

You travel from Boston to Chicago (which we'll assume is a 1,000 mile trip) in exactly 3 hours. At some time in between the two cities, you must have been going at exactly $\frac{1000}{3} \mathrm{mph}$.
$f(t)=$ position, measured as the distance from Boston.

$$
\begin{gathered}
f(3)=1000, \quad f(0)=0, \quad a=0, \text { and } \mathrm{b}=3 . \\
\frac{1000}{3}=\frac{f(b)-f(a)}{3}=f^{\prime}(c)
\end{gathered}
$$

where $f^{\prime}(c)$ is your speed at some time, c.

Versions of the Mean Value Theorem

There is a second way of writing the MVT:

$$
\begin{aligned}
f(b)-f(a) & =f^{\prime}(c)(b-a) \\
f(b) & =f(a)+f^{\prime}(c)(b-a) \quad(\text { for some } c, a<c<b)
\end{aligned}
$$

There is also a third way of writing the MVT: change the name of b to x.

$$
f(x)=f(a)+f^{\prime}(c)(x-a) \quad \text { for some } c, a<c<x
$$

The theorem does not say what c is. It depends on f, a, and x.
This version of the MVT should be compared with linear approximation (see Fig. 3).

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a) \quad x \text { near } a
$$

The tangent line in the linear approximation has a definite slope $f^{\prime}(a)$. by contrast formula is an exact formula. It conceals its lack of specificity in the slope $f^{\prime}(c)$, which could be the slope of f at any point between a and x.

Figure 3: MVT vs. Linear Approximation.

Uses of the Mean Value Theorem.

Key conclusions: (The conclusions from the MVT are theoretical)

1. If $f^{\prime}(x)>0$, then f is increasing.
2. If $f^{\prime}(x)<0$, then f is decreasing.
3. If $f^{\prime}(x)=0$ all x , then f is constant.

Definition of increasing/decreasing:
Increasing means $a<b \Rightarrow f(a)<f(b)$. Decreasing means $a<b \Longrightarrow f(a)<f(b)$.
Proofs:
Proof of 1:

$$
\begin{aligned}
a & <b \\
f(b) & =f(a)+f^{\prime}(c)(b-a)
\end{aligned}
$$

Because $f^{\prime}(c)$ and $(b-a)$ are both positive,

$$
f(b)=f(a)+f^{\prime}(c)(b-a)>f(a)
$$

(The proof of 2 is omitted because it is similar to the proof of 1)

Proof of 3:

$$
f(b)=f(a)+f^{\prime}(c)(b-a)=f(a)+0(b-a)=f(a)
$$

Conclusions 1,2 , and 3 seem obvious, but let me persuade you that they are not. Think back to the definition of the derivative. It involves infinitesimals. It's not a sure thing that these infinitesimals have anything to do with the non-infinitesimal behavior of the function.

Inequalities

The fundamental property $f^{\prime}>0 \Longrightarrow f$ is increasing can be used to deduce many other inequalities.

Example. e^{x}

1. $e^{x}>0$
2. $e^{x}>1$ for $x>0$
3. $e^{x}>1+x$

Proofs. We will take property $1\left(e^{x}>0\right)$ for granted. Proofs of the other two properties follow:
Proof of 2: Define $f_{1}(x)=e^{x}-1$. Then, $f_{1}(0)=e^{0}-1=0$, and $f_{1}^{\prime}(x)=e^{x}>0$. (This last assertion is from step 1). Hence, $f_{1}(x)$ is increasing, so $f(x)>f(0)$ for $x>0$. That is:

$$
e^{x}>1 \text { for } x>0
$$

Proof of 3: Let $f_{2}(x)=e^{x}-(1+x)$.

$$
f_{2}^{\prime}(x)=e^{x}-1=f_{1}(x)>0 \quad(\text { if } x>0)
$$

Hence, $f_{2}(x)>0$ for $x>0$. In other words,

$$
e^{x}>1+x
$$

Similarly, $e^{x}>1+x+\frac{x^{2}}{2}$ (proved using $f_{3}(x)=e^{x}-\left(1+x+\frac{x^{2}}{2}\right)$). One can keep on going: $e^{x}>1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}$ for $x>0$. Eventually, it turns out that

$$
e^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{3!}+\cdots \quad(\text { an infinite sum })
$$

We will be discussing this when we get to Taylor series near the end of the course.

