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�

Lecture 15 OutlineLecture 15 Outline 
� Introductory Remarks 
� S  h d  N  i  i  h  (b  i  fl  )� Search and Navigation, search (briefly) 
� Navigation 
� Milgram’s experiment and critiques � Milgram s experiment and critiques 
� Small World and predecessor models 
� Kleinberg’s first model 

Th  i fl  f  t  t  d  Kl  i b  ’  d� The influence of structure and Kleinberg’s second 
model (and the Watts, Dodds and Newman model) 

� Modeling Overview 
� Materials metaphor 
� Search/navigation as case study of model evolution 
� Modeling limitations and benefits 
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� Modeling limitations and benefits 



Search and NavigationSearch and Navigation 

� Search 
� “To look over carefully in order to find 

something, to explore”, “to make an effort 
to find something” seek hunt  questto find something” seek, hunt, quest. 

� Navigate 
� “To plan, record and control the position� To plan, record and control the position 

of..” “to follow a planned Course” or “to 
make one’s way” 
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Search and NavigationSearch and Navigation 
� Search 
� “To look over carefully in order to find something, toy g 

explore”, “to make an effort to find something” seek, hunt, 
quest. 

� Network literature: “to find the node containingg 
information that is desired” 

� Navigate� Navigate 
� “To plan, record and control the position of..” “to follow a 

planned Course” or “to make one’s way” 
Net k lite t “to get from one to another � Network literature: “to get from one to another 
specific node by a(the) short(est) path using only 
local information” 
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Network Search I 

� Exhaustive WWW Search 
� Catalog (while “crawling”) the network and create Catalog (while crawling ) the network and create 

a map (local index) of the entire network 
� Use information in nodes to select relevant web 

pages 
� Rank nodes for significance using the link 

information 
� Eigenvector Centrality (Brin and Page) 

E  h  d  h  i  h  h  i  d fi  d  b� Each node has a weight that is defined to be 
proportional to the weights of all nodes that point to i 

� And 

ix
jj iji xAx ∑−= 1λ

� And then    Ax =   x 
� Thus the weights are an eigenvector of the adjacency 

matrix (A) with eigenvalue λ 

λ 
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Kleinberg has considered a more sophisticated version with 
weights for pointing hubs and receiving hubs 



Network Search IINetwork Search II 

� Guided Search- databases or the web 
for unmapped elements 
� Web “spiders”p
� Queries passed (if not answered) to 

highest k node of neighbors. If some 
hb f lnearest neighbor information is also 

stored this is a valuable approach for 
peer-to-peer systemspeer to peer systems 
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Network Navigation: Milgram’s 
experimentexperiment 

� The unpublished (but widely circulated) paper of 
Kochen and Pool using simple random graphKochen and Pool using simple random graph 
models indicated the possibility of short paths 
through social networks. This instigated the famous 
social scientist Stanle  Milg am to t iment social scientist Stanley Milgram to try an experiment 

� “route” letter to person XXX who is a stockbroker 
living in Sharon, MA who works in Boston.g , 

� The letters can only be sent to someone who the 
recipient knows on a first name basis but in a way 
t t “ l ” t  XXX  P ti i t lto get “closer” to person XXX. Participants also were 
asked to record and send along the routing 
information 
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�

Milgram’s experimentMilgram s experiment 
� “route” letter to person XXX who is a stockbroker 

living in Sharon  MA who works in Bostonliving in Sharon, MA who works in Boston. 
� The letters can only be sent to someone who the 

recipient knows on a first name basis but in a wayp y 
to get closer” to person XXX. 

S  h  i  ld  k  h  d  d  f� Some guesses that it would take hundreds of steps 
were refuted by results that “showed” it took 
(actually can take) much less ( y ) 
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Six-degrees of separation Six degrees of separation 

Milgram Psych Today 2  60 (1967) 
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Milgram, Psych Today 2, 60 (1967) 
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Milgram’s experiment II 

� “route” letter to person XXX who is a stockbroker 
living in Sharon, MA who works in Boston. 

� The letters can only be sent to someone who the 
recipient knows on a first name basis but in a way 
to get closer” to person XXX. 

� Some guesses that it would take hundreds of steps 
were refuted by results that “showed” it took 
( t  ll  t  k  )  h  l  (actually can take) much less 

� A play was written and coined the phrase “six 
degrees of separation” as its Title and Milgram’s 
result became something “everyone knows”result became something “everyone knows”. 
� Everyone is separated by only six removes from 

everyone else on the planet! 
� But What did Milgram really show? 

© 2008 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology 

� But What did Milgram really show? 



t

What did Milgram really show? 

� Of 300 letters in original experiment, only 96 
(random Nebraska) sampled tested the “everyone”(random Nebraska) sampled tested the everyone 
part of what “everyone” knows 

� Only 18 of these were ever returned (the 
di  h i d “ d ”preceding graph contained very “non-random” 

Nebraska letters) 
� Other trials that were random and tested the � Other trials that were random and tested the 

everyone basis had even smaller return rates than 
Milgram’s initial experiment 

� Issues 
� Is everyone really 6 or less steps from everyone? 

© 2008 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology 

� Is everyone really 6 or less steps from everyone? 



Lecture 15 OutlineLecture 15 Outline 

� Introductory Remarks 
� Search and Navigation, search (briefly) 
� Navigation 

l ’ d� Milgram’s experiment and critiques 
� Small World and predecessor models 
� Kleinberg’s first model 
� The influence of structure and Kleinberg’s second 

model (and the Watts, Dodds and Newman model) 

� Modeling Overview� Modeling Overview 
� Search/navigation as case study of model evolution 
� Modeling limitations and benefits 
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Poisson Random Graph 

� Rapaport and later Erdos and Renyi and others such as 
Bollobas have studied a very simple model in some depth. 
Thi  i  th  h  h  d  i  k i  dThis is the one where each node in a network is connected 
with probability p to other nodes. Ensembles with variable 
numbers of links <k> 

di d d th d di ib i iare studied and the degree distribution is 

!k
ek p 

kk 

k 

><−><
≅ 

nln � The path length can be formally shown to be 
and is thus consistent with a “Small World” >< 

≅ 
k 

nl 
ln 

ln 

� Clustering is simply equal to the random probability 
of a link between 2 nodes and is nkC ><= 
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Poisson Random Graph IIp

� It is generally stated that this model is nice for intuition but 
describes no real networks. It also provides a benchmark. 

� If we look at a wide variety of “real world” graphs such as Table 
II from Newman 

� What do we see? 
� Path Length, l, is generally small (small worlds) and often � Path Length, l, is generally small (small worlds) and often 

approximately equal to path length for a Poisson random network 
� Clustering is usually orders of magnitude higher than predicted by 

random networks for the large networks and is ~constant with nrandom networks for the large networks and is constant with n 
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Small World Problem as seen by Watts

Lattice Random graph

)( /1NNL d= log)( = NNL
.)( constNC ≈ 1)( −≈ NNC
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Small World Network Model (1D) 

K is the  number of nearest neighbors originally with 
links 
(=3 below) 
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Small-world networks 

N = 1000N = 1000 
• Large clustering coeff. 

• Short typical path 

Watts & Strogatz, 

Nature 393  440 (1998) 
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Nature 393, 440 (1998) 



Small World Clustering 
EstimationEstimation 

� Watts and Strogatz got results 
from simulation 

� Later Work by Barrett and Weigt 
on their model derived 

l 
t i ffi i t f 

3)1(
)12(2

)1(3 p
K 

KC − 
− 

− 
= 

a clustering coefficient of 

� An improved model by Newman 
and Watts and independently by 

)12(2 K 

and Watts and independently by 
Monasson gives for the clustering 
coefficient 

)2(4)12(2
)1(3

++− 

− 
= 

pKpK 

KC 

� These estimates are sufficiently 
high for real networks 

)2(4)12(2 ++− pKpK 
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Small World Model Path Lengths 

� Simulation based by Watts and Strogatz showed that 
path lengths were small and scaled with ln n 

� No exact solution (yet) but Barthelemy 
and Amaral proposed a scaling relation that was laterp p  g  
derived by 
Newman and Watts. It shows that the 
transition to “Small World Path 

)(nKpf
K 

nl = 

transition to Small World Path 
Length Dependence” occurs at smaller 
p as n increases. Indeed, the number of 
h t t  d d t i ll ld b h i ishortcuts needed to give small world behavior is 

constant (for given K) as n increases 
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Ubiquity of small-world 
networksnetworks 
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Bertelemy and Amaral, Phys Rev Lett 83, 3180 (1999)


Newman & Watts, Phys Lett A 263, 341 (1999) 

Barrat & Weigt, Eur Phys J B 13, 547 (2000) 
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Small World ModelsSmall World Models 
� Small world models thus 
� Show that it is relatively easy to have higher clusteringy y g g 

and yet short paths.  In large networks a few long paths is 
all that is needed- brain now understood this way as are 
some other large scale complex systems 

� However, the specific models have only marginal 
connection to any real systems as they are stylistic 
and notionaland notional 

� Small World Models have been relatively widely 
used as a “substrate” for studies of such as iterated 
games, epidemics. The rewiring approach has also 
proven useful even if the specific models are not 
real 
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real 



Potential short paths 

� There are almost surely relatively short paths
between any two individuals 

� The path length is apparently about that calculated 
for random networks: 

>< 
≅ 

k 

nl 
ln 

ln 

� For n representative of the whole world, this would 
give path lengths as large as 10-20. Even though 
10 degrees of separation does not sound as 
impressive, it is still small.impressive, it is still small. 

� As a model, the Small World Model is obviously 
primitive as a “Systems Formation” Model. For this 
phenomena/purpose (explaining Milgram’s 
experiment) is this its most serious shortfall? 
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experiment), is this its most serious shortfall? 
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Search and Navigation 

� Search 
“To look over carefully in order to find something to� To look over carefully in order to find something, to 
explore”, “to make an effort to find something” seek, 
hunt, quest. 
Network literature: “to find the node containing � Network literature: to find the node containing 
information that is desired” 

� Navigate 
� “To plan, record and control the position of..” “to follow a 

planned Course” or “to make one’s way” 
� Network literature: “to get from one to another 

specific node by a(the) short(est) path using only 
local information” 
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�

What did Milgram really show?What did Milgram really show? 
� Of 300 letters in original experiment, only 96 (random 

Nebraska) sampled tested the “everyone” part of whatNebraska) sampled tested the everyone  part of what
“everyone” knows 

� Only 18 of these were ever returned (the preceding
graph contained very “non-random” Nebraska letters) 

� Oth i l  th d d t d th� Other trials that were random and tested the everyone 
basis had even smaller return rates than Milgram’s
initial experiment 

� Issues 
� Is everyone really 6 or less steps from everyone? 
� How does anyone route such a request? 

A th ibilit  h d  th t ll� Apathy vs. possibility –even harder now that we all 
toss/delete junk mail and return rates near 1% are 
apparently now the norm. 
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Kleinberg’s initial model 

� Most important insight 
Milgram’s experiment did not only show� Milgram s experiment did not only show 
that short paths exist but more 
importantly that people can (at least 

d )sometimes and in some circumstances) 
find them. 

� Model assumptions� Model assumptions 
� Small World (with shortcuts added onto a 

lattice of connections) –not randomly) y 
but with a probability that depends on 
distance, 
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“Navigation in Small Worlds: It is easier to find 
short chains in some networks than others” 
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=

Kleinberg’s initial model 

� Most important insight 
� Milgram’s experiment did not only show that g p y 

short paths exist but more importantly that 
people can (at least sometimes and in some 
circumstances) find them. 

� Model assumptions 
� Small World (with shortcuts added onto a lattice 

of connections) –not randomly but with aof connections) not randomly but with a 
probability that depends on distance, 

steps to find 

α−∝ rps 

βcnS ≥ � steps to findcnS mean ≥ 

2)1/()2( 
23/)2(
>= 

<−= 

αααβ 

ααβ 

for 

andfor 
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Results of Kleinberg I 

� The existence of short paths does not guarantee that they 
can be found with local informationcan be found with local information 

� It takes network structure of a certain kind (  = 2) to be 
able to do this and to get Milgram’s result 

� The structure Kleinberg showed worked seems quite artificial 

α 

� The structure Kleinberg showed worked seems quite artificial 
but it was a start because it showed that networks can be 
designed that allow for rapid search with “greedy” algorithms 
based on local information (“gossip” algorithms)based on local information ( gossip  algorithms) 

� Based on this work, even if everyone was connected to 
everyone, it is surprising that anyone could find the short 
pathpath. 
� Thus Milgram’s famous result is not explained by this model 
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Next Generation structural 
models for navigationmodels for navigation 

� Kleinberg and independently Watts, Dodds and Newman later 
proposed a structure that allows such search and appears 
consistent with the structure of social networks. 

� How would you try to route a letter to a stockbroker in 
Omaha? 

� This structure is derived starting from clues from the 
“Reverse Small World Experiments” which indicate how p
people actually navigate social networks 
� by looking for common “features” between their targets and 

their acquaintances 

� This structure introduces hierarchy into the social 
network and defines a “social distance”. 
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Assumptions in 2ndG 
Navigation/Search Models INavigation/Search Models I 
� 1. Individuals have links and 

identitiesidentities 
� 2. Individuals partition the world 

(identities of others) into a layered (identities of others) into a layered 
hierarchy and distance, is 
assumed to be the height of the lowest 

ijx

common parent. The branching ratio, b, 
and levels, l define this abstraction 

© 2008 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology 



Assumptions in 

2ndG Navigation/Search Models II2ndG Navigation/Search Models II 

� 1. Individuals have links and identities 

� 2 Individuals partition the world into a layered hierarchy � 2. Individuals partition the world into a layered hierarchy 
and distance, is assumed to be the height of the lowest 
common parent. The branching ratio, b, and levels, l define 
this abstraction 

ijx

this abstraction 
� 3. Group membership signifies not only identity but also is a 

primary basis for determining social interaction:  
� 4 Individuals hierarchically partition the world in more than � 4. Individuals hierarchically partition the world in more than 

one way and the model first assumes these distinctions are 
independent (Kleinberg shows this assumption can be 
relaxed with qualitatively similar results)relaxed with qualitatively similar results) 

� 5. Individuals construct a  measure of “social distance” 
which is the minimum over all dimensions between  the 
nodes ]exp[ xcp α−= 
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nodes ]exp[ xcpx α 



Assumptions in 
2ndG Navigation/Search Models III 

� 1. Individuals have links and identities 
� 2. Individuals partition the world into a layered hierarchy and 

distance, is assumed to be the height of the lowest common 
parent. The branching ratio, b, and levels, l define this abstraction 

� 3. Group membership signifies not only identity but also is a 
primary basis for determining social interaction: 

ijx

primary basis for determining social interaction: 
� 4. Individuals hierarchically partition the world in more than one 

way and the model first assumes these distinctions are 
independentindependent 

� 5. Individuals construct a  measure of “social distance” which is 
the minimum over all dimensions between  the nodes 

]exp[ xcpx α−= 

� 6. Individuals forward messages based only on knowledge of their 
nearest neighbors and their identities. Forward the message to 
someone closer to the target is the “greedy” or “gossip” algorithm 

d 
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Results I 

� Successful search assumes a decent 
probability (.05) of finishing the chain even p  y  (  )  g  
though the probability of terminating the 
search at each step is fairly high (0.25 or 
higher)higher) 

� Key result is that searchable networks occupyy  py  
a broad range of parameter space (  , H) 
with almost all searchable networks having 
>0 and H >1 

α 
α 

>0 and H >1 
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Results II 

� Successful search assumes a decent probability (.05) of 
finishing the chain even though the probability of 

i ti  th h h i  f i l  hi h (0 25 terminating the search at each step is fairly high (0.25 or 
higher) 

� Key result is that searchable networks occupy a broad 
range of parameter space (  , H) with almost all 
searchable networks having 

>0 and H >1 

α 
α 

� Increasing group dimension beyond 
H 

= 1 yields a 
dramatic increase in search success  (= reduction in 
delivery time) but “the improvement is lost as  H increases 
further” 
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Probability of successful searchProbability of successful search 
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Results III 

� Successful search assumes a decent probability (.05) of 
finishing the chain even though the probability of terminating 
th  h h i  f i l  hi h (0 25 hi h )the search at each step is fairly  high (0.25 or higher) 

� Key result is that searchable networks occupy a broad range 
of parameter space (  , H) with almost all searchable 
networks having >0 and H >1 

α 
α 

� Increasing group dimension beyond H = 1 yields a dramatic 
increase in search success  (= reduction in delivery time) but 
the improvement is lost as  H increases further 

� For plausible values of all parameters, agreement with 
Milgram results are found 

© 2008 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology 
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Distribution predicted vs. 
Milgram distributionsMilgram distributions 
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�

Class 14 Lecture outline 

� Decomposition 
Link to modularity� Link to modularity 

� Practical and theoretical importance 
Taxonomy and examples� Taxonomy and examples 

� Approaches to Quantitative Decomposition 
� Structural or cohesive decomposition� Structural or cohesive decomposition 
� Functional decomposition 
� Roles, positions and hierarchy 
� Motifs and course graining 

� Overview of modeling 

© 2007 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology 



The Materials Science Metaphor 

� PROCESSING> STRUCTURE> PROPERTIES 
� Structure determines/affects properties� Structure determines/affects properties 

� Structure is a multi-dimensional term that includes many scales 
and concepts simultaneously (and thus is not a “simple invisible”) 

� Properties include attributes that encompass dynamics, behavior 
and “ilities”and ilities . 

� Relationships between Structure and Properties are plentiful and 
became strongest as material classes under detailed study 
increased 

� Solid Mechanics  dislocation theory  atomic theory are some of the � Solid Mechanics, dislocation theory, atomic theory are some of the 
key enablers for deriving mechanisms to propose structure/property 
relationships in materials. 

� In materials, properties of interest (almost always) 
simultaneously depend on several structural parameterssimultaneously depend on several structural parameters. 
There is every reason to believe that engineering systems will 
similarly require numerous structural parameters to make real 
progress. 
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Schematic of Engineering System 
Model Types within a FrameworkModel Types within a Framework

Architecture (structure)
Observation Models

System Structure
Quantified by a

Rich set of metrics
Properties Models-System Formation Properties Models

models to predict
properties from structure

System Formation 
Models (predict 

Structure)  

System Properties
understood 

quantitatively 
in terms of

System
formation 

mechanisms and in terms of 
desirabilityconstraints

© 2007 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology
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The Materials Science Metaphor II 

� Processing determines Structure 
� Different Processing Modes ( e-beam deposition,Different Processing Modes ( e beam deposition,

casting, forging, crystal growth, etc.) have different 
control parameters (Temperature
gradient, stresses, pressure, magnetic and electrical 
fields, composition, etc.) that affect/determines, pos , ) ect/dete
properties. 

� Design is thus modifying the processing modes and 
control parameters to obtain the desired combination 
of properties Understanding structure is the chief of properties. Understanding structure is the chief 
enabler of effective design 

� Thermodynamics, phase transformations, thermal and 
fluid sciences, solid mechanics are useful fundamentals 
underlying Process/structure relationshipunderlying Process/structure relationship 

� Linking the framework to Engineering Systems 
requires discussing the structure and properties 
analogues in such systems 

© 2007 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology 

analogues in such systems. 
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The Materials Science Metaphor III 

� Structure Characterization 
� Materials-Multiple Dimensional and very broadly construed 

� E i i  S t  P ibiliti f  A hit t� Engineering Systems Possibilities for Architecture 
Characterization.. are also very broad (but nonetheless 
almost surely needs to grow) 

� Engineering System Properties are also numerous (butg g y p (
some of the most important are not yet adequately 
quantified) 
� Robustness (congestion, failure of nodes and links etc.) 
� Flexibility� Flexibility 
� Rates of propagation (disease, ideas etc.) 
� Performance efficiency 

� The Processing > Structure > Properties “Mantra” from 
mate ials be omes fo enginee i temsmaterials becomes for engineering systems 
� Formation mechanisms + constraints > architecture 

(structure) > Properties (ilities +) 

© 2007 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology 



Schematic of Engineering System 
Model Types within a FrameworkModel Types within a Framework

Architecture (structure)
Observation Models

System Structure
Quantified by a

Rich set of metrics
Properties Models-System Formation Properties Models

models to predict
properties from structure

System Formation 
Models (predict 

Structure)  

System Properties
understood 

quantitatively 
in terms of

System
formation 

mechanisms and in terms of 
desirabilityconstraints
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�

Model typesyp
� Models of Systems (networks) 
� Models for predicting/explaining Structure 

M d  l  f  f  i  /  h  f� Models for formation/growth processes of systems 
� Most network models such as random, small-world etc. implicitly 

fall in this category 
� Cumulative advantage, preferential attachment, bipartite 

i f i h i i i i i l icommunity formation, heuristic optimization relative to 
constraints, hierarchy (or heuristics) + random 

� Models for predicting/explaining properties of systems 
� Predicting properties from structure – architecture g p  p  

� Flexibility, robustness, performance of functions 
� Operational processes or functions 

� Communication, problem solving, decision-making, learning 
� Search and navigation� Search and navigation 
� Failures and cascades, epidemics 

� Models/algorithms used to “observe” systems (Most 
Important?) 

Calculation of structural metrics  decomposition by cohesion and 

© 2007 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology 

� Calculation of structural metrics, decomposition by cohesion and 
roles 

� Communities, motifs, coarse-graining, hierarchy 



Schematic of Complex System 
Architecting Id tif kArchitecting 

System Structure
Q tifi d b

Identify key
Architectural

Variables

Quantified by a
Rich set of metrics

Math 
models

Math 
Models Identify key

System Properties
d t dSystem

modelsModels y y
properties

and constraints

understood 
quantitatively 

in terms of 
desirability

y
formation 

mechanisms and
constraints y

The math models of properties allow trade-off of Architectural variables 
and patterns of interaction on properties to drive choice of desirable structure. 

The math models of formation mechanisms allow choice of lowest cost 

© 2007 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology

or feasible sets of desirable  structural metrics to be selected and evolved. 



The Iterative Learning Process
Objectively obtained quantitative data (facts, phenomena)

deduction induction deduction induction

hypothesis ( model, theory that can be disproved)

M d l “h d d” l b i i i lModels are “hardened” only by intensive simultaneous
observational studies of relevant reality. The result  can be

The rapid facilitation of a transition to engineeringThe rapid facilitation of a transition to engineering 
(vs. craft approaches) for the design of complex 

social/ technological systems

The emergence of a cumulative science in this area

© 2007 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology

The emergence of a cumulative science in this area.



The Iterative Learning Process
Objectively obtained quantitative data (facts, phenomena)

deduction induction deduction inductiondeduction induction deduction induction

hypothesis ( model, theory that can be disproved)

Models are “hardened” only by intensive simultaneous observational studies of relevant reality. 
What social distance (communication) exists in real social networks? 
Random network models indicate relatively short paths might exist. 

Milgram does an experiment and short paths (small worlds) exist.
Random networks do not describe clustering and short pathsRandom networks do not describe clustering and short paths

Small world model is consistent and ubiquitous- Milgram experiment is revisited
Kleinberg points out navigation issue and introduces a model which treats it

but does not agree with Milgram. A 2nd generation navigation model
i t d t t i t th i l t k d ith Mil lt

© 2008 Chris Magee, Engineering Systems Division, Massachusetts Institute of Technology

introduces structure into the social network and agrees with Milgram result.
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�

�

Possible Future Research - Sociological 
Network Models 

� Refinement of sociological network models 
� Clear measurement of identity hierarchies 

Add t  th f  ti  b  th  d  l  N  h  d  l  d  f  � Add strength of ties by methodology Newman has developed for 
weighted networks 

� Collaborative Problem Solving in Large Organizations 
. Community by knowledge area vs. collaboration by problem content vs. . Community by knowledge area vs. collaboration by problem content vs. 

collaboration by previous success vs. collaboration by other social 
network effects 

� Collaboration by Internet (WWW) 
S i  l Id  i  Hi  h  i t� Social Identity Hierarchy vs. non-internet 

� Interest Groups vs. age and economics 

� Social Networks within organizational hierarchies 
Identification of important characteristics that determine such networks � Identification of important characteristics that determine such networks 
(age, hiring group, educational institution, neighborhood, functional 
specialty, co-workers, etc.) and possible role/utility in organizational 
architecture and effectiveness 
I fl  fli  t d  ti  i  i  ti  
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� Influence on conflict and cooperation in organizations 



Possible Future Research and Applications of 
Sociological Network Models b. 

� Marketing Research 
� How congruent are groupings that are made in marketing How congruent are groupings that are made in marketing 

research with the social network communities? 
� Can one use known communication and search results to 

design more effective marketing/advertising strategies? 
� St k h ld  A l i� Stakeholder Analysis 
� Should we think of stakeholders as part of a larger 

sociological network? 
� What social relationships (and hierarchies) exist among � What social relationships (and hierarchies) exist among 

different stakeholders? 

� Study of sociological networks over time� Study of sociological networks over time 
� Permanence of identity 
� Influence of communication technology on identity 
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References for Lecture 15References for Lecture 15 

� Chapter 5 in Six Degrees 
� J. Kleinberg, “Navigation in a Small World”, 

Nature, (2000) 
� J  Kl  i  b  “S  ll  W ld Ph d th� J. Kleinberg, “Small-World Phenomena and the 

Dynamics of Information”, NIPS, (2001) 

� Watts,D. J., Dodds, P. S. and M. E. J. Newman, 
“Identity and Search in Social Networks” 
S i  296 (M  2002)Science, 296 (May 2002). 
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