DEMAND FORECASTING AND UNCERTAINTIES

Recitation 4

ESD.00

Professor Joseph Sussman Regina Clewlow

MOTIVATION FOR DEMAND MODELING

Why forecast demand?

- To estimate future demand levels for planning purposes.
- To analyze proposed projects or policies.

Who does it?

- Transportation planning agencies.
- Private transportation service providers.

MOTIVATION FOR DEMAND MODELING

What other large-scale engineering systems might have a need to forecast demand?

Energy

Image courtesy of janie.hernandez55 on Flickr.

Mobile Phones

Image courtesy of Dominik Syka on Flickr.

Internet

Image courtesy of Blaise Alleyne on Flickr.

Image courtesy of Steven Depolo on Flickr.

TRAVEL DEMAND FORECASTING METHODS

- Econometric "top-down" forecasting:
 - Often used for national, and regional-level forecasts.
 - Examples: total annual air traffic between New York and Boston, total vehicle miles travelled in the U.S.
- Choice-based "bottom-up" forecasting:
 - Often used to determine mode choice.
 - Examples: mode share for travel between New York and Boston (auto, air, or rail), mode choice for daily commute (personal vehicle, transit, biking or walking).

TRAVEL DEMAND FORECASTING METHODS

Econometric "top-down" forecasting: Functional form:

$$y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n + \varepsilon$$
$$= \beta x + \varepsilon$$

Choice-based "bottom-up" forecasting:

Functional form:

 $\mathbf{U}_{in} = \boldsymbol{\beta}_{in} \mathbf{x}_{in} + \boldsymbol{\varepsilon}_{i}$

We compare U_1 , U_2 , U_3 , ... U_n . Select i with highest utility.

DISCRETE CHOICE FRAMEWORK

Decision-Maker (e.g. traveler)

- Attributes of Decision-Maker (e.g. age, gender, income, etc.)
- Alternatives (e.g. auto, high-speed rail, auto)
 - Attributes of Alternatives (e.g. travel time, cost, frequency)

Choice

- Decision-maker n selects one and only one alternative from set
 C_n = {1,2,...,i...,J_n} with J alternatives.
- Decision Rule
 - Dominance, satisfaction, utility, etc.
 - Utility = happiness

CHOICE EXAMPLE: INTERCITY TRAVEL

- Decision maker: an individual traveler.
- Choice: whether to travel between Boston and New York by_{air}, high-speed rail, or auto.
- Goods: air, high-speed rail, auto.
- Utility function: U(X) = U (Air, HSR, Auto)
- Consumers maximize utility:
 - If U(Air) > U(HSR), U(Auto) \rightarrow choose Air
 - If U(HSR) > U(Air), U(Auto) \rightarrow choose ?
- What goes in U(X)?

CONSTRUCTING THE UTILITY FUNCTION

- U(Air) = U (travel_time, access_time, cost, ...)
- Assume linear (in the parameters)
 - U(Air) = β_1 * travel_time + β_2 * access_time + ...
- Parameters represent tastes, which may vary over people
 - Include socio-economic characteristics (e.g. age, income)
 - U(Air) = β₁ * travel_time + β₂ * access_time + β₃ * (cost/income) + ...

EVALUATING FUTURE CHANGES

Given this framework:

- U(Air) > U(HSR), U(Auto) \rightarrow choose Air
- U(HSR) > U(Air), U(Auto) \rightarrow choose HSR
- U(Auto) > U(Air), U(HSR) \rightarrow choose Auto

How might utility and choice change:

- If air fares go up?
- If cost of traveling by auto goes up?
- If congestion goes up?
- If high-speed rail travel time goes down?

MIT OpenCourseWare http://ocw.mit.edu

ESD.00 Introduction to Engineering Systems Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.