

6.858 Lecture 6
Capabilities and	 other Protection Mechanisms	

What's the problem the authors of "confused deputy" encountered?
• Their system had a Fortran compiler, /sysx/fort (in Unix filename syntax)
• They wanted the Fortran compiler to record usage statistics,	 but where?

o Created	 a special statistics	 file, /sysx/stat.
o Gave /sysx/fort "home files license" (kind-‐of	 like	 setuid	 w.r.t.	 /sysx)

• What	 goes wrong?
o	 User can invoke the compiler asking it to write output to /sysx/stat.

§ e.g. /sysx/fort /my/code.f -‐o	 /sysx/stat
o Compiler	 opens supplied path name, and succeeds, because of its license.
o User alone	 couldn't have written	 to	 that /sysx/stat file.

• Why isn't the /sysx/fort thing just a bug in the compiler?
o Could, in principle, solve	 this	 by	 adding checks	 all over the	 place.
o Problem: need to add checks virtually everywhere files are opened.
o Perfectly correct code becomes buggy once it's part of a setuid binary.

• So what's the "confused deputy"?
o	 The compiler is running on behalf of two principals:

§ the user principal (to	 open user's files)
§ the compiler principal (to open compiler's files)

o Not clear what principal's privileges should be used at any given time.

Can	 we solve this confused deputy problem in Unix?
• Suppose gcc wants to keep statistics in /etc/gcc.stats
• Could	 have a special setuid program that only writes to that file

o Not so convenient:	 can't just open	 the	 file	 like	 any	 other.
• What if we make gcc setuid to some non-‐root user	 (owner	 of stats	 file)?

o Hard	 to	 access	 user's	 original files.
• What	 if gcc is setuid-‐root? (Bad	 idea, but let's	 figure	 out why..)

o Lots	 of potential for buffer	 overflows	 leading to	 root access.
o Need to instrument every place where gcc might open a file.

• What check should we perform when gcc is opening a file?
o If it's an "internal"	 file	 (e.g. /etc/gcc.stats), maybe no check.
o If it's a user-‐supplied	 file, need to make sure user can access it.
o Can	 look at the permissions for the file in question.
o Need to also check permissions on directories leading up to this file.

• Potential problem: race conditions.
o What if the file changes between the time we check it and use it?
o Common	 vulnerability: attacker replaces legit file with symlink
o Symlink could point to, say, /etc/gcc.stats, or /etc/passwd, or ...
o Known as "time-‐of-‐check	 to time-‐of-‐use"	 bugs (TOCTTOU).

Several possible ways of thinking of this problem:

1

1. Ambient authority: privileges that are automatically used by process are the
problem here. No privileges should ever be used automatically. Name of an
object should	 be	 also	 the	 privileges	 for accessing	 it.

2. Complex	 permission checks: hard for privileged app to replicate. With simpler
checks, privileged apps might be able to correctly check if another	 user should
have access to some object.

What are examples of ambient authority?
•	 Unix UIDs, GIDs.
•	 Firewalls	 (IP	 address	 vs. privileges	 for accessing it)
•	 HTTP cookies (e.g. going to a URL like http://gmail.com)

How	 does naming an object through a capability help?
•	 Pass file descriptor instead of passing a file name.
•	 No way	 to	 pass	 a valid	 FD unless	 caller	 was	 authorized	 to	 open that file.

Could	 we use file descriptors to solve our problem with a setuid gcc?
•	 Sort-‐of:	 could make the compiler only accept files via FD passing.
•	 Or,	 could create a setuid helper that	 opens the /etc/gcc.stats file, passes an	 open

file descriptor back to our compiler process.
•	 Then, can continue using this open file much like any other file.
•	 How to	 ensure	 only	 gcc	 can run this	 helper?

o	 Make gcc setgid to some special group.
o	 Make the helper only executable to that	 special	 group.
o	 Make sure that	 group	 has no other privileges given	 to it.

What problem are the Capsicum	 authors trying to solve with capabilities?
•	 Reducing privileges	 of untrustworthy	 code in various	 applications.
•	 Overall	 plan:

o	 Break up an application into smaller components.
o	 Reduce privileges of components that are most vulnerable to attack.
o	 Carefully	 design interfaces so one component can't compromise another.

•	 Why is this difficult?
o	 Hard	 to reduce privileges of code ("sandbox") in traditional Unix system.
o	 Hard	 to give sandboxed code some limited access (to files, network, etc).

What sorts of applications might use sandboxing?
•	 OKWS.
•	 Programs that deal with network input:

o	 Put input handling	 code into	 sandbox.
•	 Programs that manipulate data in complex ways:

o	 (gzip,	 Chromium,	 media codecs, browser plugins, ...)
o	 Put complex (& likely buggy) part into sandbox.

•	 How	 about arbitrary programs downloaded from the Internet?
o	 Slightly different problem: need to isolate unmodified application code.

2

http://gmail.com

o One option: programmer writes	 their	 application	 to	 run inside sandbox.
§ Works in some cases: Javascript, Java, Native Client,	 ...
§ Need to standardize on an environment for sandboxed code.

o Another option: impose new security policy on existing code.
§ Probably need to preserve all APIs that programmer was using.
§ Need to impose checks on existing APIs, in that case.
§ Unclear	 what the	 policy	 should	 be	 for accessing files,	 network,	 etc.

• Applications that want to avoid being tricked into misusing privileges?
o Suppose two Unix users, Alice and Bob, are working on some project.
o Both are in some group G, and project dir allows access by that group.
o Let's say Alice emails someone a file from the project directory.
o Risk: Bob could replace the file with a symlink to Alice's private file.
o Alice's process will implicitly use Alice's ambient privileges to open.
o Can think of this	 as	 sandboxing an individual file	 operation.

What sandboxing plans (mechanisms) are out there (advantages, limitations)?
• OS typically provides some kind of security mechanism ("primitive").

o E.g., user/group	 IDs in Unix, as we saw	 in the previous lecture.
o For today, we	 will look at OS-‐level	 security primitives/mechanisms.
o Often a good match when you care about protecting resources the OS

manages.
o E.g., files,	 processes,	 coarse-‐grained	 memory, network interfaces, etc.

• Many OS-‐level	 sandboxing mechanisms work at the level of processes.
o Works well	 for an entire process that	 can	 be isolated as a unit.
o Can require	 re-‐architecting	 application	 to create processes for isolation.

• Other techniques	 can provide finer-‐grained	 isolation (e.g., threads	 in proc).
o Language-‐level	 isolation	 (e.g.,	 Javascript).
o Binary instrumentation (e.g., Native Client).
o Why would we need these other sandboxing	 techniques?

§ Easier to control	 access to non-‐OS	 / finer-‐grained	 objects.
§ Or perhaps can sandbox	 in	 an OS-‐independent way.

o OS-‐level	 isolation	 often	 used in	 conjunction	 with finer-‐grained	 isolation.
§ Finer-‐grained	 isolation is often hard	 to get right	 (Javascript,	 NaCl).
§ E.g., Native	 Client	 uses both a fine-‐grained	 sandbox + OS-‐level	

sandbox.
o Will look at these in more detail in later lectures.

Plan 0: Virtualize everything	 (e.g., VMs).
• Run untrustworthy code inside of a virtualized environment.
• Many examples: x86 qemu, FreeBSD jails, Linux LXC,	 ..
• Almost a different category of mechanism: strict isolation.
• Advantage: sandboxed code inside VM	 has almost no interactions with outside.
• Advantage: can sandbox unmodified code that's not expecting to be isolated.
• Advantage: some VMs	 can be started by arbitrary users (e.g., qemu).
• Advantage: usually composable with other isolation techniques, extra layer.

3

• Disadvantage: hard to allow some sharing: no shared processes, pipes, files.
• Disadvantage: virtualizing everything often makes VMs	 relatively heavyweight.

o Non-‐trivial	 CPU/memory	 overheads for each sandbox.

Plan 1: Discretionary	 Access Control	 (DAC).
• Each object has a set of permissions (an access control list).

o E.g., Unix files,	 Windows objects.
o "Discretionary" means applications set permissions on objects (e.g.,

chmod).
• Each program runs with privileges of some principals.

o E.g., Unix user/group	 IDs,	 Windows SIDs.
• When program accesses an object, check the program's privileges to decide.

o "Ambient privilege": privileges used implicitly for each access.

Name Process privileges

| |

V V

Object -> Permissions -> Allow?

How	 would you sandbox a program on a DAC system (e.g., Unix)?
• Must	 allocate a new	 principal	 (user ID):

o Otherwise,	 existing principal's privileges will be used implicitly!
• Prevent process from reading/writing other files:

o Change	 permissions on every file system-‐wide?
§ Cumbersome,	 impractical, requires root.

o Even then, new program can create important world-‐writable file.
o Alternative: chroot (again, have to be root).

• Allow process to read/write a certain file:
o Set permissions on that file appropriately, if possible.
o Link/move file into the chroot directory for the sandbox?

• Prevent process from accessing the network:
o No real	 answer for this in	 Unix.
o Maybe configure firewall?	 But not	 really process-‐specific.

• Allow process to access particular network connection:
o See above, no great	 plan for this in Unix.

• Control what processes	 a sandbox can kill / debug / etc:
o Can run under the same UID, but that may be too many privileges.
o That UID might also have other privileges...

Problem: only root can create new principals, on most DAC systems.
• E.g., Unix, Windows.
Problem: some objects might not have a clear configurable access control list.
• Unix:	 processes, network…
Problem: permissions on files might not map to policy you want for sandbox.
• Can sort-‐of	 work around	 using chroot for files,	 but awkward.

4

Related problem: performing some operations with a subset of privileges.
• Recall example with Alice emailing a file out of shared group directory.
• "Confused	 deputy problem": program is a "deputy" for multiple principals.
• One solution: check if group permissions allow access (manual, error-‐prone).

o Alternative solution: explicitly specify	 privileges	 for each operation.
§ Capabilities	 can help: capability (e.g., fd) combines object +

privileges.
§ Some Unix features incompat. w/ pure capability design (symlinks

by name).

Plan 2: Mandatory	 Access Control	 (MAC).
• In DAC,	 security policy is set by applications themselves (chmod, etc).
• MAC tries to help users / administrators specify policies for applications.

o "Mandatory"	 in the sense that applications can't change this policy.
o Traditional MAC systems try to enforce military classified levels.
o E.g.,	 ensure	 top-‐secret	 programs can't reveal classified information.

Name Operation + caller process

| |

V V

 Object --------> Allow?

^
|

Policy ------------+

• Note: many systems have aspects of both DAC + MAC in them.
o E.g., Unix user IDs are "DAC",	 but one can argue firewalls are "MAC".
o Doesn't really matter -‐-‐ good to know the extreme points in design space

Windows Mandatory Integrity Control	 (MIC)	 / LOMAC in FreeBSD.
• Keeps track	 of an "integrity level"	 for each process.
• Files have a minimum integrity level associated with them.
• Process cannot write	 to	 files	 above	 its	 integrity	 level.
• IE in Windows Vista	 runs as low integrity,	 cannot overwrite	 system files.
• FreeBSD LOMAC also tracks data read by processes.

o (Similar to many information-‐flow-‐based	 systems.)
o When	 process reads low-‐integrity	 data, it becomes low integrity too.
o Transitive, prevents adversary from indirectly tampering with files.

• Not immediately useful for sandboxing: only a fixed number of levels.

SElinux.
• Idea: system administrator specifies a system-‐wide security policy.
• Policy	 file	 specifies whether	 each operation	 should	 be	 allowed	 or denied.
• To help	 decide whether	 to	 allow/deny,	 files labeled with "types".

5

o (Yet another	 integer	 value,	 stored	 in inode along	 w/	 uid, gid, ..)

Mac OS X sandbox ("Seatbelt") and Linux seccomp_filter.
• Application specifies policy for whether to allow/deny each syscall.

o (Written	 in LISP for MacOSX's mechanism, or in BPF for Linux's.)
• Can	 be difficult to determine security impact of syscall based on args.

o What does a pathname refer to? Symlinks, hard	 links,	 race
conditions… (Although MacOSX's sandbox provides a bit more
information.)

• Advantage:	 any	 user	 can	 sandbox an	 arbitrary	 piece	 of code, finally!
• Limitation: programmer must separately write the policy + application code.
• Limitation: some operations can only be filtered at coarse granularity.

o E.g., POSIX shm in MacOSX's filter language, according to Capsicum
paper.

• Limitation: policy language might be awkware to use, stateless, etc.
o E.g., what if app should have exactly one connection to some server?

• Note: seccomp_filter is quite different from regular/old seccomp, and the
Capsicum	 paper talks about the regular/old seccomp.]

Is it a good idea to separate policy from application code?
• Depends	 on overall goal.
• Potentially good if user/admin wants to look at or change policy.
• Problematic if app developer needs to maintain both code and policy.
• For app developers, might help clarify policy.
• Less-centralized	 "MAC"	 systems (Seatbelt, seccomp) provide a compromise.

Plan 3: Capabilities (Capsicum).
Different plan for access	 control:	 capabilities.
• If process has a handle for some object ("capability"),	 can access it.

Capability --> Object

• No separate	 question	 of privileges,	 access	 control lists,	 policies,	 etc.
• E.g.: file	 descriptors on Unix are	 a capability for a file.

o Program can't make up a file descriptor it didn't legitimately get. (Why
not?)

o Once file is open, can access it; checks happened at open time.
o Can pass	 open files	 to	 other	 processes.
o FDs also help solve "time-‐of-‐check to	 time-‐of-‐use"	 (TOCTTOU)	 bugs.

• Capabilities	 are usually ephemeral: not part of on-‐disk inode.
o Whatever starts	 the program needs to re-‐create	 capabilities each time.

Global namespaces.
• Why are these guys so fascinated with eliminating global namespaces?
• Global namespaces require some access control story (e.g., ambient privs).

6

• Hard	 to	 control sandbox's	 access to objects in global namespaces.
Kernel	 changes.
• Just to	 double-‐check:	 why	 do we	 need kernel changes?

o Can	 we implement everything in a library (and LD_PRELOAD it)?
• Represent more things as file descriptors: processes (pdfork).

o Good idea in general.
• Capability	 mode: once process enters cap mode, cannot leave (+all children).
• In capability mode, can only use file descriptors -‐-‐ no global namespaces.

o Cannot	 open files by full path name: no need for chroot as in OKWS.
o Can	 still open files by relative path name,	 given fd for dir (openat).

• Cannot	 use ".." in path names or in symlinks: why not?
o In principle, ".." might be fine, as long as ".." doesn't go too far.
o Hard	 to	 enforce	 correctly.
o Hypothetical design:

§ Prohibit looking	 up ".." at the	 root capability.
§ No more ".." than non-‐".." components in path name, ignoring ".".

• Assume a process has capability C1	 for /foo.
• Race condition, in a single process	 with 2 threads:

T1: mkdir(C1, "a/b/c")

T1: C2 = openat(C1, "a")

T1: C3 = openat(C2, "b/c/../..") ## should return a cap

for /foo/a

Let openat() run until it's about to look up the first ".."

T2: renameat(C1, "a/b/c", C1, "d")

T1: Look up the first "..", which goes to "/foo"

Look up the second "..", which goes to "/"

• Do Unix permissions still apply?
o Yes --can't access all files	 in dir just because	 you have a cap for dir.
o But intent is that sandbox shouldn't rely on Unix permissions.

• For file	 descriptors, add	 a wrapper	 object that stores	 allowed	 operations.
• Where does the kernel	 check	 capabilities?

o One	 function in kernel looks up fd numbers -‐-‐ modified it to check caps.
o Also modified namei function, which looks up path names.
o Good practice: look for narrow interfaces, otherwise easy to miss checks.

libcapsicum.
• Why do application	 developers need this library?
• Biggest	 functionality: starting	 a new	 process in	 a sandbox.
fd lists.
• Mostly a convenient	 way to pass lots of file descriptors to child process.
• Name file descriptors by string instead of hard-‐coding	 an fd number.
cap_enter()	 vs lch_start().
• What	 are the advantages of sandboxing	 using	 exec	 instead of cap_enter?
• Leftover data in memory: e.g., private keys in OpenSSL/OpenSSH.

7

•	 Leftover	 file	 descriptors	 that application forgot to	 close.
•	 Figure 7 in paper: tcpdump had privileges on stdin, stdout, stderr.
•	 Figure	 10 in paper:	 dhclient had	 a raw socket, syslogd	 pipe, lease	 file.

Advantages: any process can create a new sandbox.
• (Even a sandbox can	 create	 a sandbox.)

Advantages: fine-‐grained control of access to resources (if they map to FDs).

• Files, network	 sockets,	 processes.

Disadvantage:	 weak story	 for keeping track of access	 to	 persistent files.
Disadvantage: prohibits global namespaces, requires writing code differently.

Alternative capability designs: pure capability-‐based OS (KeyKOS,	 etc).
•	 Kernel	 only	 provides a message-‐passing	 service.
•	 Message-‐passing	 channels (very much like file descriptors) are capabilities.
•	 Every	 application has to be written	 in a capability style.
•	 Capsicum	 claims to be more pragmatic: some applications need not be changed.

Linux	 capabilities: solving a different problem.
•	 Trying to	 partition	 root's	 privileges	 into	 finer-‐grained	 privileges.
•	 Represented by various capabilities: CAP_KILL,	 CAP_SETUID,

CAP_SYS_CHROOT…
•	 Process can run with	 a specific capability	 instead	 of all of root's	 privs.
•	 Ref: capabilities(7), http://linux.die.net/man/7/capabilities

Using Capsicum	 in applications.
•	 Plan: ensure sandboxed process doesn't use path names or other global NSes.

o For every directory it might need access to, open FD ahead of time.
o To open files, use openat() starting from one of these directory FDs.
o .. programs that open lots of files all over the place may be cumbersome.

•	 tcpdump.
o	 2-‐line version: just	 cap_enter() after opening	 all FDs.
o	 Used procstat to	 look at resulting	 capabilities.
o	 8-‐line version: also restrict	 stdin/stdout/stderr.
o	 Why?	 E.g., avoid reading	 stderr log,	 changing terminal settings…

•	 dhclient.
o	 Already privilege-‐separated, using Capsicum	 to reinforce sandbox (2

lines).
•	 gzip.

o Fork/exec	 sandboxed	 child	 process, feed it data using RPC	 over pipes.
o Non-‐trivial	 changes, mostly to marshal/unmarshal data for RPC:	 409 LoC.
o Interesting bug: forgot to propagate compression level at first.

•	 Chromium.
o	 Already privilege-‐separated	 on other platforms (but not on FreeBSD).
o	 ~100 LoC to wrap	 file descriptors for sandboxed processes.

•	 OKWS.

8

http://linux.die.net/man/7/capabilities

o What are the various answers to the homework question?

Does Capsicum	 achieve its goals?
•	 How hard/easy	 is it to	 use?

o	 Using Capsicum	 in an application almost always requires app changes.
§ (Many applications tend to open files by pathname, etc.)
§ One exception: Unix	 pipeline apps (filters) that	 just	 operate on	

FDs.
o	 Easier for streaming applications that process data via FDs.
o	 Other sandboxing	 requires	 similar changes (e.g., dhclient, Chromium).
o	 For existing applications, lazy initialization seems to be a problem.

§ No general-‐purpose	 solution	 -‐-‐ either	 change	 code or initialize	
early.

o	 Suggested plan: sandbox and see what breaks.

§ Might	 be subtle: gzip	 compression level bug.

•	 What	 are the security guarantees it	 provides?
o	 Guarantees	 provided to	 app	 developers:	 sandbox can	 operate	 only	 on

open FDs.
o	 Implications depend on how app developer partitions application, FDs.
o	 User/admin doesn't get any direct guarantees from Capsicum.
o	 Guarantees assume no bugs in FreeBSD kernel (lots of code), and that the

Capsicum	 developers caught all ways to access a resource not via FDs.
•	 What are the performance overheads? (CPU,	 memory)

o	 Minor overheads for accessing	 a file descriptor.
o	 Setting up a sandbox using fork/exec takes O(1msec), non-‐trivial.
o	 Privilege separation can require RPC / message-‐passing,	 perhaps

noticeable.
•	 Adoption?

o	 In FreeBSD's kernel	 now, enabled by default	 (as of FreeBSD 10).
o	 A handful of applications have	 been modified to use Capsicum:	 dhclient,

tcpdump, and a few more since the paper was written (Ref:
http://www.cl.cam.ac.uk/research/security/capsicum/freebsd.html)

o	 Casper	 daemon to help applications perform non-‐capability	 operations.
§ E.g., DNS lookups, look up entries in /etc/passwd, etc.
§ http://people.freebsd.org/~pjd/pubs/Capsicum_and_Casper.pdf	

o There's a port of Capsicum	 to Linux (but not in upstream kernel repo).

What applications wouldn't be a good fit for Capsicum?	
•	 Apps that need to control access to non-‐kernel-‐managed	 objects.

o	 E.g.: X server state,	 DBus,	 HTTP	 origins in a web browser,	 etc.
o	 E.g.: a database server that needs to ensure DB file is in correct format.
o	 Capsicum	 treats pipe to a user-‐level	 server (e.g.,	 X server) as one cap.

•	 Apps that need to connect to specific TCP/UDP	 addresses/ports from sandbox.
o Capsicum	 works by only allowing operations on existing open FDs.
o Need some other mechanism to control what FDs can be opened.

9

http://www.cl.cam.ac.uk/research/security/capsicum/freebsd.html
http://people.freebsd.org/~pjd/pubs/Capsicum_and_Casper.pdf

o Possible solution: helper program can run outside of capability mode,
open TCP/UDP	 sockets for sandboxed programs based on policy.

References:
• http://reverse.put.as/wp-‐content/uploads/2011/09/Apple-‐Sandbox-‐Guide-‐

v1.0.pdf
• http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-‐

2.6.git;a=blob;f=Documentation/prctl/seccomp_filter.txt;hb=HEAD
• http://en.wikipedia.org/wiki/Mandatory_Integrity_Control

10

http://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-v1.0.pdf
http://reverse.put.as/wp-content/uploads/2011/09/Apple-Sandbox-Guide-v1.0.pdf
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/prctl/seccomp_filter.txt;hb=HEAD
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=blob;f=Documentation/prctl/seccomp_filter.txt;hb=HEAD
http://en.wikipedia.org/wiki/Mandatory_Integrity_Control

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

