

6.858 Lecture 4
OKWS

Administrivia:

Lab 1 due	 this	 Friday.

Today's	 lecture: How to	 build	 a secure web server on Unix. The design of our lab
web	 server,	 zookws,	 is inspired by OKWS.

Privilege separation
•	 Big	 security	 idea
•	 Split system	 into modules, each with their own	 privilege

o Idea: if one module is compromised, then other modules won't be
•	 Use often:

o	 Virtual machines (e.g., run web site in its own virtual machine)
o	 SSH (seperates	 sshd, agent)

•	 Challenges:
o	 Modules need to share
o	 Need OS	 support
o	 Need to	 use	 OS carefully	 to set	 things up correctly
o Performance

OKWS
•	 Interesting	 case	 study	 of privilege	 separation

o	 Lots	 of sharing between services
§ strict partitioning	 doesn't work

o	 Lots	 of code
•	 Not widely	 used	 outside	 of OKcupid

o	 Many web	 sites have their privilege separation	 plan
o But no papers describing	 their plans

Background: security and protection in Unix
Typical principals:	 user IDs, group IDs (32-‐bit	 integers).
•	 Each process has a user ID (uid),	 and a list	 of group	 IDs (gid + grouplist).
•	 For mostly-‐historical reasons, a process	 has	 a gid	 + extra grouplist.
• Superuser principal (root) represented by uid=0, bypasses most checks.
What	 are the objects + ops in	 Unix,	 and how	 does the OS do access control?
1. Files, directories.

•	 File	 operations:	 read, write, execute, change perms, ..
•	 Directory operations: lookup, create, remove, rename, change perms, ..
•	 Each inode	 has an owner user and group.
•	 Each inode has read, write, execute perms for user, group, others.
•	 Typically	 represented	 as	 a bit vector	 written	 base	 8 (octal); octal	 works well	

because each digit	 is 3 bits (read,	 write,	 exec).

1

•	 Who can change permissions on files? Only user owner (process UID).
•	 Hard link to file: need write permission to file.

o	 Possible	 rationale:	 quotas.
o	 Possible	 rationale:	 prevent hard-‐linking	 /etc/passwd to /var/mail/root,

with a world-‐writable /var/mail.
•	 Execute for directory means being able to lookup names (but not ls).
•	 Checks	 for process	 opening file	 /etc/passwd:

o	 Must	 be able to look	 up 'etc' in	 /, 'passwd' in	 /etc.
o	 Must	 be able to open	 /etc/passwd (read or read-‐write).

• Suppose you want file readable	 to intersection	 of group1	 and group2.
o	 Is it possible to implement this in Unix?

2. File	 descriptors.
•	 File access control checks performed at file open.
•	 Once process has an open	 file descriptor,	 can continue	 accessing.
•	 Processes can pass file descriptors (via Unix domain sockets).

3. Processes.
•	 What	 can	 you	 do to a process?

o	 debug	 (ptrace),	 send signal,	 wait for exit & get status,	 ..
•	 Debugging, sending signals: must have same UID (almost).

o	 Various	 exceptions,	 this	 gets	 tricky	 in practice.
•	 Waiting / getting exit status: must be parent of that process.

4. Memory.
•	 One process cannot generally name memory in another process.
•	 Exception: debug mechanisms.
•	 Exception: memory-‐mapped files.

5. Networking.
•	 Operations:

o	 bind to a port
o	 connect to some address
o	 read/write	 a connection
o	 send/receive	 raw packets

•	 Rules:
o only	 root (UID 0) can	 bind	 to	 ports	 below 1024; (e.g., arbitrary	 user

cannot run a web server on port 80.)
o only	 root can	 send/receive raw packets.
o	 any process can connect	 to any address.
o	 can only	 read/write	 data	 on connection	 that a process has an fd for.

• Additionally, firewall imposes its own checks, unrelated to processes.

How does	 the principal of a process	 get set?
•	 System	 calls: setuid(), setgid(), setgroups().
• Only root (UID 0) can call these system	 calls (to first approximation).
Where does the user ID, group ID list come from?
•	 On a typical Unix system, login program	 runs as root (UID 0)
•	 Checks	 supplied	 user	 password	 against /etc/shadow.

2

•	 Finds	 user's	 UID	 based	 on	 /etc/passwd.
•	 Finds	 user's	 groups	 based	 on /etc/group.
• Calls	 setuid(), setgid(), setgroups()	 before	 running user's	 shell
How do you regain privileges	 after	 switching to	 a non-‐root user?
•	 Could	 use	 file	 descriptor	 passing (but have	 to	 write	 specialized	 code)
•	 Kernel mechanism: setuid/setgid binaries.

o	 When	 the binary is executed,	 set	 process UID or GID to binary owner.
o	 Specified with a special bit in the file's permissions.
o	 For example, su / sudo binaries are typically setuid root.
o	 Even if your shell	 is not	 root,	 can	 run	 "su	 otheruser"
o	 su process	 will check passwd,	 run	 shell as	 otheruser	 if OK.
o	 Many such programs on Unix, since root privileges often needed.

•	 Why might setuid-‐binaries be a bad idea,	 security-‐wise?
o Many ways for adversary (caller of binary) to manipulate process.
o	 In Unix, exec'ed process inherits environment vars, file descriptors, ..
o	 Libraries that a setuid program	 might use not sufficiently paranoid
o Historically, many vulnerabilities (e.g. pass $LD_PRELOAD, ..)

How to prevent a malicious program	 from	 exploiting setuid-‐root binaries?
•	 Kernel mechanism: chroot

o	 Changes what '/' means when opening files by path name.
o	 Cannot name files (e.g. setuid binaries) outside chroot tree.

•	 For example, OKWS uses chroot to restrict programs to /var/okws/run, ..
•	 Kernel also ensures that '/../' does not allow escape from	 chroot.
•	 Why chroot	 only allowed for root?

o	 setuid	 binaries	 (like	 su)	 can	 get confused	 about what's	 /etc/passwd.
o	 many kernel implementations (inadvertently?) allow recursive calls to

chroot() to escape from	 chroot jail, so chroot is not an effective security	
mechanism	 for a process running as root.

•	 Why hasn't	 chroot	 been	 fixed to confine a root	 process in	 that	 dir?
o Root can write kern mem, load kern modules, access disk sectors, ..

Background: traditional web server architecture (Apache).
•	 Apache runs N identical processes, handling HTTP requests.
•	 All processes run as user 'www'.
•	 Application code (e.g. PHP) typically runs inside each of N apache processes.
•	 Any accesses to OS state (files, processes, ...) performed by www's UID.
•	 Storage:	 SQL database, typically one connection with full access to DB.

o	 Database	 principal is the	 entire	 application.
•	 Problem: if any component is compromised, adversary gets all the data.
•	 What kind of attacks might occur in a web application?

o	 Unintended	 data	 disclosure	 (getting	 page source code, hidden files,	 ..)
o	 Remote code execution (e.g., buffer overflow in Apache)
o	 Buggy application	 code (hard to write secure PHP	 code),	 e.g.	 SQL inj.
o Attacks on web browsers (cross-‐site scripting	 attacks)

3

Back to OKWS: what's	 their application / motivation?
• Dating web site:	 worried	 about data secrecy.
• Not so worried about adversary breaking in and sending spam.
• Lots	 of server-‐side code execution: matching, profile updates, ...
• Must	 have sharing between users (e.g. matching) -‐-‐ cannot just partition.
• Good summary of overall plan: "aspects most vulnerable to attack are least

useful	 to attackers"

Why is this hard?
• Unix makes it tricky to reduce privileges (chroot, UIDs, ..)
• Applications need to share state in complicated ways.
• Unix and SQL databases	 don't have fine-‐grained sharing control mechanisms.

How does OKWS partition the	 web server? (Figure 1 in paper)
• How does a request flow in this	 web server?

okd -> oklogd

-> pubd

-> svc -> dbproxy

-> oklogd

• How does this design map onto physical machines?
o Probably many front-‐end machines (okld, okd, pubd, oklogd, svc)
o Several DB machines (dbproxy, DB)

How do these components interact?
• okld	 sets	 up socketpairs	 (bidirectional pipes)	 for each	 service.

o One socketpair for control	 RPC requests (e.g.,	 "get	 a new	 log	 socketpair").
o One socketpair for logging (okld has to get it from	 oklogd first via RPC).
o For HTTP services: one	 socketpair	 for forwarding HTTP connections.
o For okd:	 the	 server-‐side	 FDs for HTTP services' socketpairs	 (HTTP+RPC).

• okd	 listens	 on a separate	 socket for control requests	 (repub,	 relaunch).
o Seems to be port 11277 in Figure 1, but a Unix domain socket in OKWS

code.
o For repub, okd talks to pubd to generate new templates, then	 sends

generated templates to each service via RPC control channel.
• Services	 talk to DB	 proxy	 over TCP (connect by port number).

How does OKWS enforce isolation between components in Figure 1?
• Each service	 runs	 as	 a separate	 UID	 and	 GID.
• chroot used to confine each process to a separate directory (almost).
• Components communicate via pipes (or rather, Unix domain socket pairs).
• File	 descriptor	 passing used	 to	 pass	 around	 HTTP connections.
• What's the point	 of okld?
• Why isn't okld the same as okd?

4

•	 Why does okld need to run	 as root?	 (Port	 80,	 chroot/setuid.)
•	 What	 does it	 take for okld to launch a service?

o	 Create	 socket pairs
o	 Get new socket to	 oklogd
o	 fork,	 setuid/setgid,	 exec	 the	 service
o	 Pass control sockets	 to	 okd

•	 What's the point	 of oklogd?
•	 What's the point	 of pubd?
•	 Why do we need a database proxy?

o	 Ensure that each service cannot fetch other data, if it is compromised.
§ DB proxy	 protocol defined	 by	 app developer, depending on what

app requires.
§ One likely-‐common kind of proxy is a templatized SQL query.
§ Proxy	 enforces overall query structure	 (select,	 update), but allows

client to fill in query parameters.
o	 Where does the 20-‐byte token come from? Passed as arguments to

service.
o	 Who checks the token?	 DB	 proxy has list	 of tokens (& allowed queries?)
o	 Who generates token? Not clear; manual by system	 administrator?
o	 What if token disclosed? Compromised component could issue queries.

•	 Table 1: why are all services and okld in the same chroot? Is it a problem?
o	 How would we decide?	 What	 are the readable,	 writable files there?
o	 Readable: shared	 libraries	 containing service	 code.
o	 Writable: each service can	 write to its own	 /cores/<uid>.
o	 Where's the config file? /etc/okws_config, kept in memory by okld.
o	 oklogd	 & pubd	 have	 separate chroots because they have important state:

oklogd's chroot contains the log file, want to ensure it's not modified.
pubd's chroot contains the templates, want to avoid disclosing them	 (?).

•	 Why does OKWS need a separate GID for every service?
o	 Need to execute binary, but file ownership allows chmod.
o	 Solution: binaries owned by root, service is group owner, mode 0410.
o	 Why 0410 (user read,	 group	 execute),	 and not	 0510 (user read & exec)?

•	 Why not	 process per user?	 Is per user strictly better?	 user X service?
o	 Per-‐service isolation probably made sense for okcupid given their apps.

(i.e. perhaps	 they	 need a lot of sharing	 between	 users anyway?)
o	 Per-‐user isolation requires allocating UIDs per user, complicating okld,

and reducing performance (though may still be OK for some use cases).

Does OKWS achieve	 its	 goal?
•	 What attacks from	 the list of typical web attacks does OKWS solve, and how?

o	 Most	 things other than	 XSS are addressed.
o	 XSS sort-‐of addressed through using specialized template routines.

•	 What's the effect of each component being compromised, and "attack surface"?
o	 okld: root access to web server machine, but maybe not to DB.

§ attack surface: small (no user input other than svc exit).

5

o okd: intercept/modify all user HTTP reqs/responses, steal passwords.
§ attack surface: parsing	 the first	 line of HTTP	 request; control	

requests.
o	 pubd: corrupt templates, leverage to maybe exploit bug in some service?

§ attack surface: requests to fetch templates from	 okd.
o	 oklogd: corrupt/ignore/remove/falsify log entries

§ attack surface: log messages from	 okd, okld, svcs
o	 service: send garbage to user, access data for svc (modulo dbproxy)

§ attack surface: HTTP requests from	 users (+ control msgs from	
okd)

o dbproxy:	 access/change	 all user	 data in the	 database	 it's	 talking	 to
§ attack surface: requests from	 authorized services,	 requests from	

unauthorized services (easy	 to drop)
•	 OS kernel is part of the attack surface once a single service is compromised.

o	 Linux kernel vulnerabilities rare, but still show up several times a year.
•	 OKWS assumes developer does the right thing at design level (maybe not impl):

o	 Split web application into separate services (not clump all into one).
o	 Define	 precise	 protocols	 for DB proxy	 (otherwise	 any	 service gets	 any	

data).
•	 Performance?

o	 Seems better than most alternatives.
o	 Better performance under load (so, resists DoS attacks to some extent)

•	 How does OKWS compare to Apache?
o Overall,	 better design.
o okld runs as root, vs. nothing in Apache, but probably minor.
o	 Neither	 has	 a great solution	 to	 client-‐side	 vulnerabilities (XSS,	 ..)

•	 Howmight an adversary try to compromise a system	 like OKWS?
o	 Exploit buffer overflows or other vulnerabilities in C++ code.
o	 Find a SQL injection attack in some dbproxy.
o	 Find	 logic	 bugs	 in service code.
o Find	 cross-‐site	 scripting	 vulnerabilities.

How successful is OKWS?
• Problems described in the paper are still pretty common.
• okcupid.com	 still runs OKWS, but doesn't seem	 to be used by other sites.
•	 C++ might not be a great choice for writing web applications.

o	 For many web applications, getting C++ performance might not be
critical.

o	 Design should	 be	 applicable	 to	 other	 languages	 too	 (Python, etc).
o	 In fact,	 zookws	 for labs	 in 6.858 is inspired	 by	 OKWS,	 runs	 Python	 code.

•	 DB proxy	 idea hasn't taken off, for typical web applications.
o	 But DB proxy	 is critical to	 restrict what data a service can access	 in

OKWS.
o	 Why? Requires developers to define these APIs: extra work, gets in the

way.

6

o Can	 be hard to precisely define the allowed DB queries ahead of time.
(Although if it's hard, might be a flag	 that security	 policy	 is fuzzy.)

•	 Some work on privilege separation for Apache (though still hard to use).
o	 Unix makes it hard for non-‐root	 users to manipulate user IDs.
o	 Performance is a concern (running a separate process for each request).

•	 scripts.mit.edu	 has a similar design, running scripts under different UIDs.
o	 Mostly worried about isolating users from one another.
o	 Paranoid web app developer	 can create	 separate	 locker	 for each

component.
•	 Sensitive systems do partitioning at a coarser granularity.

o	 Credit	 card processing companies split credit card data vs. everything
else.

o	 Use virtual machines or physical machine isolation to split apps, DBs, ..

How	 could you integrate modern Web application frameworks with OKWS?
•	 Need to	 help okd figure	 out how to	 route	 requests	 to	 services.
•	 Need to implement DB proxies, or some variant thereof, to protect data.

o	 Depends on how amenable the app code is to static analysis.
o	 Or need to ask programmer to annotate services w/ queries they can run.

•	 Need to ensure app code can	 run	 in	 separate processes (probably OK).

References:
•	 http://css.csail.mit.edu/6.858/2014/readings/setuid.pdf
•	 http://httpd.apache.org/docs/trunk/suexec.html

7

http://css.csail.mit.edu/6.858/2014/readings/setuid.pdf
http://httpd.apache.org/docs/trunk/suexec.html

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

