
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

  
 

 
 

 
 

 
 

 
 

 
 

6.858 Lecture 3

Baggy bounds continued:
Example code (assume that slot_size=16)

char *p = malloc(44); 
//Note that the nearest power of 2 (i.e., 
//64 bytes) are allocated. So, there are 
//64/(slot_size) = 4 bounds table entries 
//that are set to log_2(64) = 6. 
char *q = p + 60; 
//This access is ok: It's past p's object 
//size of 44, but still within the baggy 
//bounds of 64. 
char *r = q + 16; 
//ERROR: r is now at an offset of 60+16=76 
//from p. This means that r is (76-64)=12 
//beyond the end of p. This is more than 
//half a slot away, so baggy bounds will 
//raise an error. 
char *s = q + 8; 
//s is now at an offset of 60+8=68 from p. 
//So, s is only 4 bytes beyond the baggy 
//bounds, which is less than half a slot 
//away. No error is raised, but the OOB 
//high-order bit is set in s, so that s 
//cannot be derefernced. 
char *t = s - 32; 
//t is now back inside the bounds, so 
//the OOB bit is cleared. 

For OOB pointers, the	  high	  bit is set (if OOB within half	  a slot).
• Typically,	  OS	  kernel lives	  in upper half,	  protects itself via paging	  hardware.
• Q: Why	  half a slot	  for out-‐of-‐bounds?

So what's the answer to the homework problem

char *p = malloc(256); 
char *q = p + 256; 
char ch = *q; //Does this raise an exception? 

//Hint: How big is the baggy bound for p? 

Does baggy bounds checking have to instrument *every* memory address
computation and access? No: static analysis can prove that some addresses are
always safe to use. However,	  some address calculations are "unsafe" in the sense
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that	  there's no way to statically determine bounds on their values. Such unsafe	  
variables	  need checks.

Handling	  function call arguments is a bit tricky, because the x86 calling	  convention	  
is fixed,	  i.e., the	  hardware expects	  certain	  things	  to	  be	  in certain	  places on the stack.

However,	  we can copy unsafe arguments to a separate area, and make sure that the
copied arguments are aligned and protected.

Q: Do we have to overwrite the original arguments with the copies values upon	  
function	  return?

• A: No, because	  everything is pass-‐by-‐value	  in C!

How	  does baggy bounds checking ensure binary compatibility with existing	  
libraries?	  In particular,	  how	  does baggy bounds code interact with	  pointers	  to	  
memory that was allocated by uninstrumented code?

Solution: Each	  entry	  in the	  bounds	  table	  is initialized to the value 31, meaning that
the corresponding pointer has a memory bound of 2^31 (which is all of the
addressable memory). On memory allocation in *instrumented* code, bounds
entries	  are	  set as	  previously	  discussed, and reset to 31 when the memory is
deallocated. Memory allocated to uninstrumented code will never change bounds	  
table entries from their default values of 31; so, when instrumented code interacts
with those pointers,	  bound errors will	  never happen.

Example:

Contiguous	  range	  of memory used for the heap

+-------------------+  
| | 
| | 
| Heap allocated by | 
| uninstrumented |---+  
| code | \  Bounds table 
 | | \  
+-------------------+      \ +-----------+  
| | +->|  | 
| | | Always 31 | 
| Heap allocated by | | | 
| instrumented code | +-----------+  
| | | Set using | 
| |--------->| baggy bnds| 
+-------------------+  +-----------+  

What	  does this all mean?
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• Can't detect out-‐of-‐bounds pointers generated in uninstrumented code.
• Can't detect when OOB pointer	  passed	  into	  library	  goes in-‐bounds again.

o	 Q: Why?
o	 A: Because there is no pointer inspection in the uninstrumented code

which could clear the high-‐order	  OOB bit!
o	 Q: Why do they instrument strcpy() and memcpy()?
o	 A:	  Because	  otherwise,	  those	  functions	  are uninstrumented code, and

suffer from the same problems that we just discussed. For example
off-‐the-‐shelf	  strcpy()	  does not ensure	  that dest has	  enough space	  to	  
store	  src!

How can baggy	  bits	  leverage	  64-‐bit	  address spaces?
• Can	  get rid of the table storing bounds information, and put it in the pointer.

Regular pointer 
+---------------+-------+------------------------+  
| zero | size | supported addr space | 
+---------------+-------+------------------------+  

21 5 	 38 

 OOB pointer 
+--------+------+-------+------------------------+  

        | offset | size |  zero | supported addr space | 
+--------+------+-------+------------------------+  

13 5 8 	 38  

This is similar to a fat pointer, but has the advantages that:
1) tagged	  pointers are the same size as regular pointers
2) writes	  to them are atomic

so programmer expectations are not broken, and data layouts stay the same.
Also note that, using tagged pointers, we can now keep track of OOB pointers that	  go
much further out-‐of-‐bounds.	  This is because now we can tag pointers with an offset	  
indicating	  how far	  they are from their base pointer. In the 32-‐bit	  world,	  we couldn't
track	  OOB offsets without	  having	  an additional	  data	  structure!

Can	  you still launch a buffer overflow attack in a baggy bounds system? Yes,	  because
the	  world	  is filled	  with	  sadness.

•	 Could	  exploit a vulnerability in uninstrumented libraries.
•	 Could	  exploit temporal vulnerabilities (use-‐after-‐free).
• Mixed buffers and code pointers:

struct { 
void (*f) (void); 
char buf[256]; 

} my_type;  
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Note	  that *f	  is not an	  allocated	  type,	  so there	  are	  no bounds checks associated with
its	  dereference during invocation.	  Thus, if s.buf	  is overflowed	  (e.g., by	  a bug in	  an
uninstrumented library) and s.f is corrupted, the invocation	  of f will	  not	  cause a
bounds error! 

Would re-‐ordering	  f and	  buf	  help?
•	 Might	  break	  applications that	  depend on	  struct	  layout.
• Might not help if this is an array of (struct my_type)'s

In general,	  what are	  the costs of bounds checking?
•	 Space overhead	  for bounds information (fat pointer or baggy bounds table).
•	 Baggy bounds also has space overhead for extra padding memory used by buddy

allocator (although some amount of overhead is intrinsic to all popular
algorithms for dynamic memory allocation).

•	 CPU overheads	  for pointer arithmetic, dereferencing.
•	 False alarms!

o	 Unused out-‐of-‐bounds pointers.
o	 Temporary out-‐of-‐bounds	  pointers by more than slot_size/2.
o	 Conversion	  from pointer to integers and back.
o	 Passing out-‐of-‐bounds pointer into unchecked code (the	  high	  address	  bit

is set,	  so if the	  unchecked code does arithmetic using that pointer,	  
insanity may ensue).

• Requires a significant amount of compiler support

So, baggy bounds checking is an approach for mitigating buffer overflows	  in buggy	  
code.

Mitigation approach 3: non-‐executable	  memory (AMD's NX bit, Windows
DEP, W^X, ...)

•	 Modern hardware allows specifying read, write, and execute perms for memory
(R, W permissions were there a long time ago; execute is recent.)

•	 Can	  mark the stack non-‐executable,	  so that	  adversary	  cannot	  run their code.
•	 More generally, some systems enforce "W^X", meaning all memory is either	  

writable,	  or executable,	  but not	  both.	  (Of course,	  it's OK to be neither.)
o	 Advantage: Potentially works without any application changes.
o	 Advantage: The hardware is watching you all of the time, unlike the OS.
o	 Disadvantage: Harder	  to dynamically generate code (esp. with W^X).

§ JITs like Java runtimes, Javascript engines, generate x86 on	  the fly.
§ Can work around	  it, by	  first writing, then changing to executable.

Mitigation approach 4: randomized memory addresses (ASLR, stack
randomization, ...
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Observation: Many attacks use hardcoded addresses in	  shellcode! [The attacker
grabs	  a binary	  and uses gdb to figure	  out where stuff	  lives.]

•	 So, we can make it difficult for the	  attacker	  to	  guess	  a valid code pointer. 
o	 Stack randomization: Move stack to random locations, and/or place

padding between stack variables. This makes it more difficult for 
attackers to determine: 

§ Where the return	  address for the current	  frame	  is located
§ Where the attacker's shellcode buffer will	  be located

o	 Randomize entire address space (Address Space Layout Randomization):
randomize the stack, the heap, location of DLLs, etc. 

§ Rely on the fact that a lot of code is relocatable.
§ Dynamic loader can choose random address for each library,	  

program.
§ Adversary doesn't know address of system(), etc.

o	 Can this	  still be	  exploited? 
§ Adversary might guess randomness. Especially on 32-‐bit

machines, there aren't many random bits (e.g., 1 bit belongs to
kernel/user mode divide, 12 bits can't be randomized because
memory-‐mapped pages need to be aligned with page boundaries,	  
etc.).

§ For example, attacker could buffer overflow and try to overwrite
the return	  address with the address of usleep(16),	  and then	  seeing	  
if the connection	  hangs for 16 seconds, or if it crashes (in	  which	  
case the server forks a new ASLR process with the same ASLR
offsets). usleep() could be in	  one of 2^16 or 2^28 places. [Mor
details: https://cseweb.ucsd.edu/~hovav/dist/asrandom.pdf]

o ASLR is more practical on 64-‐bit machines (easily 32 bits of randomness). 
• -‐Adversary might extract randomness. 

o	 Programs might generate a stack trace or error message which contains a 
pointer. 

o	 If adversaries can run some code, they might be able to extract real 
addresses (JIT'd code?). 

o	 Cute	  address	  leak in Flash's	  Dictionary	  (hash	  table): 
1) Get	  victim to visit your Flash-‐enabled	  page	  (e.g., buy an ad). 
2) Hash	  table internally computes hash value of keys.
3) Hash	  value	  of integers	  is the	  integer. 
4) Hash	  value	  of object	  is its memory address. 
5) Iterating	  over a hash table is done from lowest hash	  key	  to	  highest

hash	  key. 
6) So,	  the attacker creates	  a Dictionary,	  inserts	  a string	  object which 

has	  shellcode,	  and	  then	  inserts a bunch of numbers into the 
Dictionary. 
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7) By	  iterating	  through	  the Dictionary,	  the attacker can determine
where the string	  object	  lives by seeing which integers the object	  
reference	  falls	  between!

8) Now,	  overwrite	  a code pointer	  with	  the	  shellcode address and
bypass ASLR!

•	 Adversary might not care exactly where to jump.
o	 Ex: "Heap	  spraying": fill memory w/ shellcode so that a random jump is

OK!
•	 Adversary might exploit some code that's not randomized (if such code exists).
•	 Some other interesting uses of randomization:

o	 System call randomization (each process has its	  own	  system call
numbers).

o	 Instruction set randomization so that attacker cannot easily determine
what	  "shellcode"	  looks like for a particular program instantiation.

o	 *Ex: Imagine that the processor had a special register	  to	  hold	  a "decoding
key."	  Each installation of a particular	  application	  is associated	  with	  a
random key. Each machine instruction in the application is XOR'ed	  with	  
this key.	  When	  the OS launches the process,	  it sets the decoding	  ke
register, and	  the processor uses this key to decode	  instructions before
executing them.

Which buffer overflow	  defenses are used in	  practice?
•	 gcc and MSVC enable stack canaries	  by default.
•	 Linux and Windows include ASLR and NX by default.
•	 Bounds checking is not as common, due to:

1) Performance	  overheads
2) Need	  to	  recompile program
3) False	  alarms: Common	  theme in security tools: false alarms preven

adoption	  of tools! Often,	  zero false alarms with some misses better than
zero misses but false alarms.

RETURN-‐ORIENTED PROGRAMMING	  (ROP)

ASLR and DEP are very powerful defensive techniques.
•	 DEP prevents the attacker from executing stack code of his or her choosing
•	 ASLR prevents the attacker from determining where shellcode or return	  

addresses are located.
•	 However, what if the	  attacker	  could	  find	  PREEXISTING	  CODE with KNOWN

FUNCTIONALITY	  that was located at a KNOWN LOCATION?	  Then, the	  attacker	  
could	  invoke	  that code to	  do evil.

o	 Of course,	  the preexisting	  code isn't	  *intentionally* evil,	  since it is a
normal part of the application.

o	 However, the	  attacker	  can pass	  that code unexpected arguments, or jum
to the middle of the code and only	  execute	  a desired piece of that code.
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These kinds	  of attacks	  are	  called	  return-‐oriented	  programming, or	  ROP.	  To
understand how ROP works, let's examine a simple C program that has a securit
vulnerability. 

void run_shell(){ 
system("/bin/bash"); 

}  

void process_msg(){ 
char buf[128]; 
gets(buf); 

}  

Let's imagine that the system does not use ASLR or stack canaries, but it does use
DEP. process_msg() has an obvious buffer overflow,	  but the attacker can't	  use this
overflow to execute shellcode in buf, since DEP makes the stack non-‐executable.	  
However, that run_shell()	  function looks tempting . . . how can the attacker execute
it?
1) Attacker	  disassembles the program and figures out where the starting	  address of 

run_shell().
2) The	  attacker	  launches	  th buffer	  overflow,	  and overwrites	  the	  return	  address	  of 

process_msg() with the address of run_shell(). Boom! The attacker now has 
access to a shell	  which runs with the privileges of the application. 

+------------------+  
entry %ebp ----> | .. prev frame .. | 

| | 
| | 
+------------------+  

entry %esp ----> | return address | ^ <--Gets overwritten  
+------------------+ |  with address of  

new %ebp ------> | saved %ebp | | run_shell() 
 +------------------+ | 
| buf[127] | | 
| ... | | 
| buf[0] | | 

new %esp ------> +------------------+  

That's	  a straightforward	  extension	  of the	  buffer	  overflows	  that we've already looked
at. But how can we pass arguments to the function that we're jumping to?

char *bash_path = "/bin/bash";  

void run_cmd(){  
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system("/something/boring"); 
}  

void process_msg(){ 
char buf[128]; 
gets(buf); 

}  

In this case, the argument that we want to pass to is already located in the progra
code. There's also a preexisting call to system(), but that	  call	  isn't passing	  the
argument that we want.

We know that system() must be getting linked to our program. So, using our trust
friend gdb,	  we	  can	  find where the system() function is located, and where bash_path
is located.

To call system() with the bash_path argument, we have to set	  up the stack	  in	  the
way that system() expects when we jump to it. Right after we jump to system()
system() expects this to be on the stack:

| ... | 
+------------------+  
| argument | The system() argument. 
+------------------+  

%esp ----> | return addr | Where system() should 
+------------------+  ret after it has  

finished.  

So, the buffer overflow	  needs to set up a stack that
looks like this:

 +------------------+  
entry %ebp ----> | .. prev frame .. | 

| | 
| | 
| - - - - - - - - | ^  
| | |Address of bash_path 
+ - - - - - - - - | |  
| | |Junk return addr for 
+------------------+ |  system() 

entry %esp ----> | return address | |Address of system() 
+------------------+ |  

new %ebp ------> |  saved %ebp | |Junk 
+------------------+ | 
| buf[127] | | 
| ... | |Junk 
| buf[0] | | 

new %esp ------> +------------------+ |  
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In essence,	  what we've done	  is set	  up a fake	  calling frame for the system() call! In
other	  words,	  we've simulated what the compiler would do if it actually wanted to
setup a call to system().

What if the string "/bin/bash" was not in the program
We could include that	  string	  in	  the buffer overflow, and then have the argument to
system() point to the string.

| h\0 | ^ 
| - - - - - - - - | |  
| /bas | | 
| - - - - - - - - | |  
| /bin | | <-------------------+ 
| - - - - - - - - | |  | 
| | | Address of bash_path-+ 
+ - - - - - - - - | |  
| | | Junk return addr from 
 +------------------+ |  system() 

entry %esp -> |  return address | | Address of system() 
 +------------------+ | 

new %ebp ---> |  saved %ebp | | Junk 
+------------------+ | 
| buf[127] | | 
| ... | | Junk 
| buf[0] | | 

new %esp ---> +------------------+ |  

Note that, in these examples, I've been assuming that the attacker used a junk return	  
address from system(). However,	  the attacker could set it to something useful. In
fact, by setting it to something useful,	  the attacker can chain calls	  together!

GOAL: We want to call system("/bin/bash") multiple times. Assume that we've
found	  three	  addresses:

1) The	  address of system()
2) The	  address	  of the	  string	  "/bin/bash"
3) The	  address	  of these	  x86	  opcodes:
• pop %eax	   //Pops the top-‐of-‐stack and	  puts	  it in %eax
• ret //Pops	  the	  top-‐of-‐stack and	  puts	  it in %eip

These opcodes are an example of a "gadget." Gadgets are preexisting	  instruction	   
sequences	  that can be	  strung	  together	  to	  create	  an	  exploit.	  Note	  that there are user-
friendly tools to help you extract gadgets from preexisting binaries (e.g. msfelfscan).
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 | | ^ 
+ - - - - - - + | 
| | | Address of bash_path -+ Fake calling  
+ - - - - - - + | | frame for 

(4) 	 | | | Address of pop/ret -+ system()  
+ - - - - - - + |  

(3) 	 | | | Address of system() 
+ - - - - - - + |  

(2) 	 | | | Address of bash_path -+ Fake calling  
+ - - - - - - + | | frame for 

(1) 	 | | | Address of pop/ret -+ system()  
+--------------+ | 

entry %esp-> |return address| | Address of system() 
+--------------+ |  

new %ebp --> | saved %ebp | | Junk 
+--------------+ | 
| buf[127] | | 
| ... | | Junk 

new %esp --> | 	 buf[0] | | 
+--------------+ |  

So, how does this work? Remember that the return instruction pops the top of the
stack and	  puts	  it into	  %eip.

1) The	  overflowed function terminates by issuing ret. Ret pops off the top-‐of-‐
the-‐stack	  (the address of system()) and sets %eip to it. system() starts
executing,	  and %esp is now at (1), and	  points	  to	  the	  pop/ret gadget.

2) system()	  finishes execution and calls ret. %esp goes from (1)-‐-‐>(2)	  as	  the	  ret 
instruction	  pops the	  top of the	  stack and	  assigns	  it to	  %eip. %eip is now the
start of the	  pop/ret gadget.

3) The	  pop instruction	  in the	  pop/ret gadget discards	  the bash_path variable 
from the stack. %esp is now at (3). We are still	  in	  the pop/ret	  gadget!

4) The	  ret instruction	  in the	  pop/ret gadget pops the top-‐of-‐the-‐stack and	  puts 
it	  into %eip.	  Now	  we're in system() again, and %esp is (4).

And so on and so forth. Basically, we've created a new type of machine that is driven
by the stack	  pointer instead of the regular instruction pointer! As the stack pointe
moves down the stack,	  it executes gadgets whose code comes from preexisting	  
program code, and whose data comes from stack data created	  by	  the	  buffer	  
overflow. This attack evades	  DEP protections-‐-‐we're not	  generating any new	  code,	  
just invoking preexisting	  code!

Stack reading:	  defeating	  canaries
Assumptions

1) The	  remote server has a buffer overflow vulnerability.
2) Server crashes	  and restarts	  if a canary	  value	  is set to an incorrect	  value. 
3) When	  the server respawns,	  the canary is NOT re-‐randomized,	  and the ASLR 

is NOT	  re-‐randomized,	  e.g.,	  because the server uses Linux's PIE mechanism,
and fork() is used to make new workers and not execve().

So, to determine an 8-‐byte canary value:
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char canary[8]; 
for(int i = 1; i <= 8; i++){ //For each canary byte… 

for(char c = 0; c < 256; c++){  //…guess the value. 
canary[i-1] = c; 
server_crashed = try_i_byte_overflow(i, canary); 

if(!server_crashed){ 
//We've discovered i-th byte of the 
//the canary! 
break; 

} 
} 

} 
//At this point we have the canary, but remember that the 
//attack assumes that the server uses the same canary after 
//a crash.  

Guessing the	  correct value	  for a byte	  takes	  128 guesses on average,	  so on	  a 32-‐bit	  
system, we only need 4*128=512 guesses to determine the canary (on a 64-‐bit	  
system, we need 8*128=1024).

•	 Much faster than	  brute force attacks on	  the canary (2^15 or 2^27 expected 
guesses on 32/64 bit systems with 16/28 bits of ASLR randomness).

• Brute force attacks can use the usleep(16) probe	  that we discussed earlier. 
Canary	  reading can be	  extended	  to	  reading arbitrary	  values that the	  buffer	  overflow
can overwrite!

So, we've discussed how we can defeat randomized canaries if canaries	  are	  not
changed when	  a server regenerates. We've also shown	  how	  to use gdb	  and gadgets
to execute preexisting functions in the program using arguments that	  the attacker
controls.	  But what if the	  server DOES use ASLR? This prevents you from usin
offline	  analysis to find where the preexisting	  functions are?

This is what the	  paper	  for today's	  lecture	  discussed. That paper assumed that we're
using	  a 64-‐bit	  machine, so that's what we'll assume in this lecture from now on. For
the purposes of this discussion, the main change is that function arguments are now
passed in registers	  instead	  of on the	  stack.

Blind	  Return-‐oriented	  Programming	  

STEP 1: Find a stop gadget
A stop gadget is a return address that points to code that will hang the program, but
not crash	  it. Once the attacker can defeat	  canaries,	  he can overwrite the overflown	  
function's	  return	  address	  and	  start guessing locations for a stop	  gadget.	  If the client
network	  connection suddenly closes, the guessed address was not	  a stop	  gadget.	  If
the connection	  stays open, the gadget	  is a stop	  gadget.

STEP 2: Find	  gadgets that pop stack entries.
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Once you	  have a stop	  gadget,	  you	  can use it	  to find other	  gadgets	  that pop entries	  off
of the	  stack and into	  registers. There are	  three	  building	  blocks	  to	  locate	  stack
popping gadgets:

• probe: Address of a potential stack popping gadget 
• stop: Address of a stop gadget 
• crash: Address of non-‐executable	  code	  (0x0) 

Example: Find a gadget that pops one thing off the stack.

sleep(10) 
^ ^  

+--- pop rax  / \  
| ret / \  
| \--->[stop]  0x5.... 0x5....  
| [trap] 0x0 0x0 <-----------------+  
+----------[probe] 0x4...8  0x4...c -->xor rax, rax | Crash! 

ret | 
\__________|  

After you do this a bunch of times, you'll have a collection	  of gadgets	  that pop one
thing from the stack and	  then	  return.	  However,	  you won't know which *register*	  
those gadgets store the popped value in. You	  need to know	  which registers are used
to store data so that you can	  issue	  a system	  call. Each system call expects	  its	  
arguments to be in a specific set of registers.

Note	  that we	  also	  don't know the	  location	  of the syscall()	  library	  function.

STEP 3: Find syscall() and determine which registers the pop gadgets use
pause()	  is a system call that takes no arguments (and thus ignores everything	  in	  the
registers). To find pause(),	  the	  attacker	  chains	  all of the "pop x; ret"	  gadgets on the
stack,	  pushing	  the system call number for pause() as the "argument" for each	  
gadget. At the bottom of the chain, the attacker places the guessed address for
syscall().

| | ^ 
+ - - - - - - - - + |  
| | | Guessed addr of syscall() 
+ - - - - - - - - + |  
| | | ... 
+ - - - - - - - - + |  
| | | Sys call # for pause 
+ - - - - - - - - + |  
| | | Address of pop rsi; ret //Gadget 2 
+ - - - - - - - - + |  
| | | Sys call # for pause 
+------------------+ | 

entry %esp ----> | return address | | Address of pop rdi; ret //Gadget 1 
+------------------+ |  

new %ebp ------> | saved %ebp | | Junk 
+------------------+ | 
| buf[127] | |  
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| ... | | Junk 
new %esp ------> | buf[0] | | 

+------------------+ |  

So, at the end of this chain, the pop gadgets have placed the syscall number for
pause()	  in a bunch of registers,	  hopefully	  including	  rax,	  which	  is the one that
syscall()	  looks	  in to	  find the	  the	  syscall number.

Once this mega-‐gadget	  induces a pause, we know that we've determined the
location	  of syscall().	  Now	  we need to determine which gadget pops the top-‐of-‐the
stack into	  rax.	  The attacker	  can	  figure	  this	  out by process-‐of-‐elimination:	  iterativel
try just	  one gadget and see	  if you can	  invoke	  pause().

To identify	  arbitrary	  "pop x;	  ret"	  gadgets,	  you can use tricks with other system calls
that	  use the x register that	  you're trying	  to find.

So, the outcome of this phase is knowledge of "pop x; ret"	  gadgets, location of
syscall().

STEP 4: Invoke write()
Now we	  want to	  invoke	  the	  write	  call on the	  network socket that the	  server has	  with	  
the attacker's client.	  We	  need the	  following	  gadgets:

pop rdi; ret (socket) 
pop rsi; ret (buffer) 
pop rdx; ret (length) 
pop rax; ret (write syscall number) 
syscall  

We have to guess the socket	  value,	  but that's fairly	  easy	  to	  do, since Linux restricts	  
processes to 1024 simultaneously open file descriptors, and new	  file descriptors
have	  to	  be	  the	  lowest one available (so guessing a small file descriptor works well	  in	  
practice).

To test whether	  we've	  guessed the	  correct file descriptor, simply try the write and
see if we receive anything!	  

Once we have the socket number, we issue a write, and for the data	  to send . . . we
send a pointer to the program's .text segment! This allows the attacker to read the
program's code (which was randomized but now totally known to the attacker!)
Now the attacker can find more powerful gadgets directly,	  and	  leverage	  those	  
gadgets to open a shell.

Defenses	  against BROP
•	 Re-‐randomize	  the canaries and the address space after each crash! 

o	 Use exec()	  instead	  of fork()	  to	  create processes,	  since	  fork()	  copies the 
address space	  of the	  parent to	  the	  child. 
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o	 Interesting,	  Windows is vulnerable	  to	  BROP because Windows has no 
fork()	  equivalent. 

•	 Sleep-‐on-‐crash? 
o	 Now a BROP	  attack is a denial-‐of-‐service! 

•	 Bounds-‐checking? 
o	 Up to 2x performance overhead . . . 

More info on	  ROP and x86 calling	  conventions:

•	 http://www.slideshare.net/saumilshah/dive-into-rop-a-quick-introduction-to 
return-oriented-programming

•	 https://cseweb.ucsd.edu/~hovav/dist/rop.pdf 
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