

6.858 Lecture 3

Baggy bounds continued:
Example code (assume that slot_size=16)

char *p = malloc(44);
//Note that the nearest power of 2 (i.e.,
//64 bytes) are allocated. So, there are
//64/(slot_size) = 4 bounds table entries
//that are set to log_2(64) = 6.
char *q = p + 60;
//This access is ok: It's past p's object
//size of 44, but still within the baggy
//bounds of 64.
char *r = q + 16;
//ERROR: r is now at an offset of 60+16=76
//from p. This means that r is (76-64)=12
//beyond the end of p. This is more than
//half a slot away, so baggy bounds will
//raise an error.
char *s = q + 8;
//s is now at an offset of 60+8=68 from p.
//So, s is only 4 bytes beyond the baggy
//bounds, which is less than half a slot
//away. No error is raised, but the OOB
//high-order bit is set in s, so that s
//cannot be derefernced.
char *t = s - 32;
//t is now back inside the bounds, so
//the OOB bit is cleared.

For OOB pointers, the	 high	 bit is set (if OOB within half	 a slot).
• Typically,	 OS	 kernel lives	 in upper half,	 protects itself via paging	 hardware.
• Q: Why	 half a slot	 for out-‐of-‐bounds?

So what's the answer to the homework problem

char *p = malloc(256);
char *q = p + 256;
char ch = *q; //Does this raise an exception?

//Hint: How big is the baggy bound for p?

Does baggy bounds checking have to instrument *every* memory address
computation and access? No: static analysis can prove that some addresses are
always safe to use. However,	 some address calculations are "unsafe" in the sense

1

that	 there's no way to statically determine bounds on their values. Such unsafe	
variables	 need checks.

Handling	 function call arguments is a bit tricky, because the x86 calling	 convention	
is fixed,	 i.e., the	 hardware expects	 certain	 things	 to	 be	 in certain	 places on the stack.

However,	 we can copy unsafe arguments to a separate area, and make sure that the
copied arguments are aligned and protected.

Q: Do we have to overwrite the original arguments with the copies values upon	
function	 return?

• A: No, because	 everything is pass-‐by-‐value	 in C!

How	 does baggy bounds checking ensure binary compatibility with existing	
libraries?	 In particular,	 how	 does baggy bounds code interact with	 pointers	 to	
memory that was allocated by uninstrumented code?

Solution: Each	 entry	 in the	 bounds	 table	 is initialized to the value 31, meaning that
the corresponding pointer has a memory bound of 2^31 (which is all of the
addressable memory). On memory allocation in *instrumented* code, bounds
entries	 are	 set as	 previously	 discussed, and reset to 31 when the memory is
deallocated. Memory allocated to uninstrumented code will never change bounds	
table entries from their default values of 31; so, when instrumented code interacts
with those pointers,	 bound errors will	 never happen.

Example:

Contiguous	 range	 of memory used for the heap

+-------------------+
| |
| |
| Heap allocated by |
| uninstrumented |---+
| code | \ Bounds table
 | | \
+-------------------+ \ +-----------+
	+->	
		Always 31
Heap allocated by		
instrumented code	+-----------+	
		Set using
	--------->	baggy bnds
+-------------------+ +-----------+

What	 does this all mean?

2

• Can't detect out-‐of-‐bounds pointers generated in uninstrumented code.
• Can't detect when OOB pointer	 passed	 into	 library	 goes in-‐bounds again.

o	 Q: Why?
o	 A: Because there is no pointer inspection in the uninstrumented code

which could clear the high-‐order	 OOB bit!
o	 Q: Why do they instrument strcpy() and memcpy()?
o	 A:	 Because	 otherwise,	 those	 functions	 are uninstrumented code, and

suffer from the same problems that we just discussed. For example
off-‐the-‐shelf	 strcpy()	 does not ensure	 that dest has	 enough space	 to	
store	 src!

How can baggy	 bits	 leverage	 64-‐bit	 address spaces?
• Can	 get rid of the table storing bounds information, and put it in the pointer.

Regular pointer
+---------------+-------+------------------------+
| zero | size | supported addr space |
+---------------+-------+------------------------+

21 5 	 38

 OOB pointer
+--------+------+-------+------------------------+

 | offset | size | zero | supported addr space |
+--------+------+-------+------------------------+

13 5 8 	 38

This is similar to a fat pointer, but has the advantages that:
1) tagged	 pointers are the same size as regular pointers
2) writes	 to them are atomic

so programmer expectations are not broken, and data layouts stay the same.
Also note that, using tagged pointers, we can now keep track of OOB pointers that	 go
much further out-‐of-‐bounds.	 This is because now we can tag pointers with an offset	
indicating	 how far	 they are from their base pointer. In the 32-‐bit	 world,	 we couldn't
track	 OOB offsets without	 having	 an additional	 data	 structure!

Can	 you still launch a buffer overflow attack in a baggy bounds system? Yes,	 because
the	 world	 is filled	 with	 sadness.

•	 Could	 exploit a vulnerability in uninstrumented libraries.
•	 Could	 exploit temporal vulnerabilities (use-‐after-‐free).
• Mixed buffers and code pointers:

struct {
void (*f) (void);
char buf[256];

} my_type;

3

Note	 that *f	 is not an	 allocated	 type,	 so there	 are	 no bounds checks associated with
its	 dereference during invocation.	 Thus, if s.buf	 is overflowed	 (e.g., by	 a bug in	 an
uninstrumented library) and s.f is corrupted, the invocation	 of f will	 not	 cause a
bounds error!

Would re-‐ordering	 f and	 buf	 help?
•	 Might	 break	 applications that	 depend on	 struct	 layout.
• Might not help if this is an array of (struct my_type)'s

In general,	 what are	 the costs of bounds checking?
•	 Space overhead	 for bounds information (fat pointer or baggy bounds table).
•	 Baggy bounds also has space overhead for extra padding memory used by buddy

allocator (although some amount of overhead is intrinsic to all popular
algorithms for dynamic memory allocation).

•	 CPU overheads	 for pointer arithmetic, dereferencing.
•	 False alarms!

o	 Unused out-‐of-‐bounds pointers.
o	 Temporary out-‐of-‐bounds	 pointers by more than slot_size/2.
o	 Conversion	 from pointer to integers and back.
o	 Passing out-‐of-‐bounds pointer into unchecked code (the	 high	 address	 bit

is set,	 so if the	 unchecked code does arithmetic using that pointer,	
insanity may ensue).

• Requires a significant amount of compiler support

So, baggy bounds checking is an approach for mitigating buffer overflows	 in buggy	
code.

Mitigation approach 3: non-‐executable	 memory (AMD's NX bit, Windows
DEP, W^X, ...)

•	 Modern hardware allows specifying read, write, and execute perms for memory
(R, W permissions were there a long time ago; execute is recent.)

•	 Can	 mark the stack non-‐executable,	 so that	 adversary	 cannot	 run their code.
•	 More generally, some systems enforce "W^X", meaning all memory is either	

writable,	 or executable,	 but not	 both.	 (Of course,	 it's OK to be neither.)
o	 Advantage: Potentially works without any application changes.
o	 Advantage: The hardware is watching you all of the time, unlike the OS.
o	 Disadvantage: Harder	 to dynamically generate code (esp. with W^X).

§ JITs like Java runtimes, Javascript engines, generate x86 on	 the fly.
§ Can work around	 it, by	 first writing, then changing to executable.

Mitigation approach 4: randomized memory addresses (ASLR, stack
randomization, ...

4

Observation: Many attacks use hardcoded addresses in	 shellcode! [The attacker
grabs	 a binary	 and uses gdb to figure	 out where stuff	 lives.]

•	 So, we can make it difficult for the	 attacker	 to	 guess	 a valid code pointer.
o	 Stack randomization: Move stack to random locations, and/or place

padding between stack variables. This makes it more difficult for
attackers to determine:

§ Where the return	 address for the current	 frame	 is located
§ Where the attacker's shellcode buffer will	 be located

o	 Randomize entire address space (Address Space Layout Randomization):
randomize the stack, the heap, location of DLLs, etc.

§ Rely on the fact that a lot of code is relocatable.
§ Dynamic loader can choose random address for each library,	

program.
§ Adversary doesn't know address of system(), etc.

o	 Can this	 still be	 exploited?
§ Adversary might guess randomness. Especially on 32-‐bit

machines, there aren't many random bits (e.g., 1 bit belongs to
kernel/user mode divide, 12 bits can't be randomized because
memory-‐mapped pages need to be aligned with page boundaries,	
etc.).

§ For example, attacker could buffer overflow and try to overwrite
the return	 address with the address of usleep(16),	 and then	 seeing	
if the connection	 hangs for 16 seconds, or if it crashes (in	 which	
case the server forks a new ASLR process with the same ASLR
offsets). usleep() could be in	 one of 2^16 or 2^28 places. [Mor
details: https://cseweb.ucsd.edu/~hovav/dist/asrandom.pdf]

o ASLR is more practical on 64-‐bit machines (easily 32 bits of randomness).
• -‐Adversary might extract randomness.

o	 Programs might generate a stack trace or error message which contains a
pointer.

o	 If adversaries can run some code, they might be able to extract real
addresses (JIT'd code?).

o	 Cute	 address	 leak in Flash's	 Dictionary	 (hash	 table):
1) Get	 victim to visit your Flash-‐enabled	 page	 (e.g., buy an ad).
2) Hash	 table internally computes hash value of keys.
3) Hash	 value	 of integers	 is the	 integer.
4) Hash	 value	 of object	 is its memory address.
5) Iterating	 over a hash table is done from lowest hash	 key	 to	 highest

hash	 key.
6) So,	 the attacker creates	 a Dictionary,	 inserts	 a string	 object which

has	 shellcode,	 and	 then	 inserts a bunch of numbers into the
Dictionary.

5

https://cseweb.ucsd.edu/~hovav/dist/asrandom.pdf

7) By	 iterating	 through	 the Dictionary,	 the attacker can determine
where the string	 object	 lives by seeing which integers the object	
reference	 falls	 between!

8) Now,	 overwrite	 a code pointer	 with	 the	 shellcode address and
bypass ASLR!

•	 Adversary might not care exactly where to jump.
o	 Ex: "Heap	 spraying": fill memory w/ shellcode so that a random jump is

OK!
•	 Adversary might exploit some code that's not randomized (if such code exists).
•	 Some other interesting uses of randomization:

o	 System call randomization (each process has its	 own	 system call
numbers).

o	 Instruction set randomization so that attacker cannot easily determine
what	 "shellcode"	 looks like for a particular program instantiation.

o	 *Ex: Imagine that the processor had a special register	 to	 hold	 a "decoding
key."	 Each installation of a particular	 application	 is associated	 with	 a
random key. Each machine instruction in the application is XOR'ed	 with	
this key.	 When	 the OS launches the process,	 it sets the decoding	 ke
register, and	 the processor uses this key to decode	 instructions before
executing them.

Which buffer overflow	 defenses are used in	 practice?
•	 gcc and MSVC enable stack canaries	 by default.
•	 Linux and Windows include ASLR and NX by default.
•	 Bounds checking is not as common, due to:

1) Performance	 overheads
2) Need	 to	 recompile program
3) False	 alarms: Common	 theme in security tools: false alarms preven

adoption	 of tools! Often,	 zero false alarms with some misses better than
zero misses but false alarms.

RETURN-‐ORIENTED PROGRAMMING	 (ROP)

ASLR and DEP are very powerful defensive techniques.
•	 DEP prevents the attacker from executing stack code of his or her choosing
•	 ASLR prevents the attacker from determining where shellcode or return	

addresses are located.
•	 However, what if the	 attacker	 could	 find	 PREEXISTING	 CODE with KNOWN

FUNCTIONALITY	 that was located at a KNOWN LOCATION?	 Then, the	 attacker	
could	 invoke	 that code to	 do evil.

o	 Of course,	 the preexisting	 code isn't	 *intentionally* evil,	 since it is a
normal part of the application.

o	 However, the	 attacker	 can pass	 that code unexpected arguments, or jum
to the middle of the code and only	 execute	 a desired piece of that code.

6

These kinds	 of attacks	 are	 called	 return-‐oriented	 programming, or	 ROP.	 To
understand how ROP works, let's examine a simple C program that has a securit
vulnerability.

void run_shell(){
system("/bin/bash");

}

void process_msg(){
char buf[128];
gets(buf);

}

Let's imagine that the system does not use ASLR or stack canaries, but it does use
DEP. process_msg() has an obvious buffer overflow,	 but the attacker can't	 use this
overflow to execute shellcode in buf, since DEP makes the stack non-‐executable.	
However, that run_shell()	 function looks tempting . . . how can the attacker execute
it?
1) Attacker	 disassembles the program and figures out where the starting	 address of

run_shell().
2) The	 attacker	 launches	 th buffer	 overflow,	 and overwrites	 the	 return	 address	 of

process_msg() with the address of run_shell(). Boom! The attacker now has
access to a shell	 which runs with the privileges of the application.

+------------------+
entry %ebp ----> | .. prev frame .. |

| |
| |
+------------------+

entry %esp ----> | return address | ^ <--Gets overwritten
+------------------+ | with address of

new %ebp ------> | saved %ebp | | run_shell()
 +------------------+ |
buf[127]	
...	
buf[0]	

new %esp ------> +------------------+

That's	 a straightforward	 extension	 of the	 buffer	 overflows	 that we've already looked
at. But how can we pass arguments to the function that we're jumping to?

char *bash_path = "/bin/bash";

void run_cmd(){

7

system("/something/boring");
}

void process_msg(){
char buf[128];
gets(buf);

}

In this case, the argument that we want to pass to is already located in the progra
code. There's also a preexisting call to system(), but that	 call	 isn't passing	 the
argument that we want.

We know that system() must be getting linked to our program. So, using our trust
friend gdb,	 we	 can	 find where the system() function is located, and where bash_path
is located.

To call system() with the bash_path argument, we have to set	 up the stack	 in	 the
way that system() expects when we jump to it. Right after we jump to system()
system() expects this to be on the stack:

| ... |
+------------------+
| argument | The system() argument.
+------------------+

%esp ----> | return addr | Where system() should
+------------------+ ret after it has

finished.

So, the buffer overflow	 needs to set up a stack that
looks like this:

 +------------------+
entry %ebp ----> | .. prev frame .. |

| |
| |
| - - - - - - - - | ^
| | |Address of bash_path
+ - - - - - - - - | |
| | |Junk return addr for
+------------------+ | system()

entry %esp ----> | return address | |Address of system()
+------------------+ |

new %ebp ------> | saved %ebp | |Junk
+------------------+ |
| buf[127] | |
| ... | |Junk
| buf[0] | |

new %esp ------> +------------------+ |

8

In essence,	 what we've done	 is set	 up a fake	 calling frame for the system() call! In
other	 words,	 we've simulated what the compiler would do if it actually wanted to
setup a call to system().

What if the string "/bin/bash" was not in the program
We could include that	 string	 in	 the buffer overflow, and then have the argument to
system() point to the string.

| h\0 | ^
- - - - - - - -	
/bas	
- - - - - - - -	
/bin	
- - - - - - - -	
+ - - - - - - - - | |
| | | Junk return addr from
 +------------------+ | system()

entry %esp -> | return address | | Address of system()
 +------------------+ |

new %ebp ---> | saved %ebp | | Junk
+------------------+ |
| buf[127] | |
| ... | | Junk
| buf[0] | |

new %esp ---> +------------------+ |

Note that, in these examples, I've been assuming that the attacker used a junk return	
address from system(). However,	 the attacker could set it to something useful. In
fact, by setting it to something useful,	 the attacker can chain calls	 together!

GOAL: We want to call system("/bin/bash") multiple times. Assume that we've
found	 three	 addresses:

1) The	 address of system()
2) The	 address	 of the	 string	 "/bin/bash"
3) The	 address	 of these	 x86	 opcodes:
• pop %eax	 //Pops the top-‐of-‐stack and	 puts	 it in %eax
• ret //Pops	 the	 top-‐of-‐stack and	 puts	 it in %eip

These opcodes are an example of a "gadget." Gadgets are preexisting	 instruction	
sequences	 that can be	 strung	 together	 to	 create	 an	 exploit.	 Note	 that there are user-
friendly tools to help you extract gadgets from preexisting binaries (e.g. msfelfscan).

9

 | | ^
+ - - - - - - + |
| | | Address of bash_path -+ Fake calling
+ - - - - - - + | | frame for

(4) 	 | | | Address of pop/ret -+ system()
+ - - - - - - + |

(3) 	 | | | Address of system()
+ - - - - - - + |

(2) 	 | | | Address of bash_path -+ Fake calling
+ - - - - - - + | | frame for

(1) 	 | | | Address of pop/ret -+ system()
+--------------+ |

entry %esp-> |return address| | Address of system()
+--------------+ |

new %ebp --> | saved %ebp | | Junk
+--------------+ |
| buf[127] | |
| ... | | Junk

new %esp --> | 	 buf[0] | |
+--------------+ |

So, how does this work? Remember that the return instruction pops the top of the
stack and	 puts	 it into	 %eip.

1) The	 overflowed function terminates by issuing ret. Ret pops off the top-‐of-‐
the-‐stack	 (the address of system()) and sets %eip to it. system() starts
executing,	 and %esp is now at (1), and	 points	 to	 the	 pop/ret gadget.

2) system()	 finishes execution and calls ret. %esp goes from (1)-‐-‐>(2)	 as	 the	 ret
instruction	 pops the	 top of the	 stack and	 assigns	 it to	 %eip. %eip is now the
start of the	 pop/ret gadget.

3) The	 pop instruction	 in the	 pop/ret gadget discards	 the bash_path variable
from the stack. %esp is now at (3). We are still	 in	 the pop/ret	 gadget!

4) The	 ret instruction	 in the	 pop/ret gadget pops the top-‐of-‐the-‐stack and	 puts
it	 into %eip.	 Now	 we're in system() again, and %esp is (4).

And so on and so forth. Basically, we've created a new type of machine that is driven
by the stack	 pointer instead of the regular instruction pointer! As the stack pointe
moves down the stack,	 it executes gadgets whose code comes from preexisting	
program code, and whose data comes from stack data created	 by	 the	 buffer	
overflow. This attack evades	 DEP protections-‐-‐we're not	 generating any new	 code,	
just invoking preexisting	 code!

Stack reading:	 defeating	 canaries
Assumptions

1) The	 remote server has a buffer overflow vulnerability.
2) Server crashes	 and restarts	 if a canary	 value	 is set to an incorrect	 value.
3) When	 the server respawns,	 the canary is NOT re-‐randomized,	 and the ASLR

is NOT	 re-‐randomized,	 e.g.,	 because the server uses Linux's PIE mechanism,
and fork() is used to make new workers and not execve().

So, to determine an 8-‐byte canary value:

10

char canary[8];
for(int i = 1; i <= 8; i++){ //For each canary byte…

for(char c = 0; c < 256; c++){ //…guess the value.
canary[i-1] = c;
server_crashed = try_i_byte_overflow(i, canary);

if(!server_crashed){
//We've discovered i-th byte of the
//the canary!
break;

}
}

}
//At this point we have the canary, but remember that the
//attack assumes that the server uses the same canary after
//a crash.

Guessing the	 correct value	 for a byte	 takes	 128 guesses on average,	 so on	 a 32-‐bit	
system, we only need 4*128=512 guesses to determine the canary (on a 64-‐bit	
system, we need 8*128=1024).

•	 Much faster than	 brute force attacks on	 the canary (2^15 or 2^27 expected
guesses on 32/64 bit systems with 16/28 bits of ASLR randomness).

• Brute force attacks can use the usleep(16) probe	 that we discussed earlier.
Canary	 reading can be	 extended	 to	 reading arbitrary	 values that the	 buffer	 overflow
can overwrite!

So, we've discussed how we can defeat randomized canaries if canaries	 are	 not
changed when	 a server regenerates. We've also shown	 how	 to use gdb	 and gadgets
to execute preexisting functions in the program using arguments that	 the attacker
controls.	 But what if the	 server DOES use ASLR? This prevents you from usin
offline	 analysis to find where the preexisting	 functions are?

This is what the	 paper	 for today's	 lecture	 discussed. That paper assumed that we're
using	 a 64-‐bit	 machine, so that's what we'll assume in this lecture from now on. For
the purposes of this discussion, the main change is that function arguments are now
passed in registers	 instead	 of on the	 stack.

Blind	 Return-‐oriented	 Programming	

STEP 1: Find a stop gadget
A stop gadget is a return address that points to code that will hang the program, but
not crash	 it. Once the attacker can defeat	 canaries,	 he can overwrite the overflown	
function's	 return	 address	 and	 start guessing locations for a stop	 gadget.	 If the client
network	 connection suddenly closes, the guessed address was not	 a stop	 gadget.	 If
the connection	 stays open, the gadget	 is a stop	 gadget.

STEP 2: Find	 gadgets that pop stack entries.

11

Once you	 have a stop	 gadget,	 you	 can use it	 to find other	 gadgets	 that pop entries	 off
of the	 stack and into	 registers. There are	 three	 building	 blocks	 to	 locate	 stack
popping gadgets:

• probe: Address of a potential stack popping gadget
• stop: Address of a stop gadget
• crash: Address of non-‐executable	 code	 (0x0)

Example: Find a gadget that pops one thing off the stack.

sleep(10)
^ ^

+--- pop rax / \
| ret / \
| \--->[stop] 0x5.... 0x5....
| [trap] 0x0 0x0 <-----------------+
+----------[probe] 0x4...8 0x4...c -->xor rax, rax | Crash!

ret |
__________|

After you do this a bunch of times, you'll have a collection	 of gadgets	 that pop one
thing from the stack and	 then	 return.	 However,	 you won't know which *register*	
those gadgets store the popped value in. You	 need to know	 which registers are used
to store data so that you can	 issue	 a system	 call. Each system call expects	 its	
arguments to be in a specific set of registers.

Note	 that we	 also	 don't know the	 location	 of the syscall()	 library	 function.

STEP 3: Find syscall() and determine which registers the pop gadgets use
pause()	 is a system call that takes no arguments (and thus ignores everything	 in	 the
registers). To find pause(),	 the	 attacker	 chains	 all of the "pop x; ret"	 gadgets on the
stack,	 pushing	 the system call number for pause() as the "argument" for each	
gadget. At the bottom of the chain, the attacker places the guessed address for
syscall().

| | ^
+ - - - - - - - - + |
| | | Guessed addr of syscall()
+ - - - - - - - - + |
| | | ...
+ - - - - - - - - + |
| | | Sys call # for pause
+ - - - - - - - - + |
| | | Address of pop rsi; ret //Gadget 2
+ - - - - - - - - + |
| | | Sys call # for pause
+------------------+ |

entry %esp ----> | return address | | Address of pop rdi; ret //Gadget 1
+------------------+ |

new %ebp ------> | saved %ebp | | Junk
+------------------+ |
| buf[127] | |

12

| ... | | Junk
new %esp ------> | buf[0] | |

+------------------+ |

So, at the end of this chain, the pop gadgets have placed the syscall number for
pause()	 in a bunch of registers,	 hopefully	 including	 rax,	 which	 is the one that
syscall()	 looks	 in to	 find the	 the	 syscall number.

Once this mega-‐gadget	 induces a pause, we know that we've determined the
location	 of syscall().	 Now	 we need to determine which gadget pops the top-‐of-‐the
stack into	 rax.	 The attacker	 can	 figure	 this	 out by process-‐of-‐elimination:	 iterativel
try just	 one gadget and see	 if you can	 invoke	 pause().

To identify	 arbitrary	 "pop x;	 ret"	 gadgets,	 you can use tricks with other system calls
that	 use the x register that	 you're trying	 to find.

So, the outcome of this phase is knowledge of "pop x; ret"	 gadgets, location of
syscall().

STEP 4: Invoke write()
Now we	 want to	 invoke	 the	 write	 call on the	 network socket that the	 server has	 with	
the attacker's client.	 We	 need the	 following	 gadgets:

pop rdi; ret (socket)
pop rsi; ret (buffer)
pop rdx; ret (length)
pop rax; ret (write syscall number)
syscall

We have to guess the socket	 value,	 but that's fairly	 easy	 to	 do, since Linux restricts	
processes to 1024 simultaneously open file descriptors, and new	 file descriptors
have	 to	 be	 the	 lowest one available (so guessing a small file descriptor works well	 in	
practice).

To test whether	 we've	 guessed the	 correct file descriptor, simply try the write and
see if we receive anything!	

Once we have the socket number, we issue a write, and for the data	 to send . . . we
send a pointer to the program's .text segment! This allows the attacker to read the
program's code (which was randomized but now totally known to the attacker!)
Now the attacker can find more powerful gadgets directly,	 and	 leverage	 those	
gadgets to open a shell.

Defenses	 against BROP
•	 Re-‐randomize	 the canaries and the address space after each crash!

o	 Use exec()	 instead	 of fork()	 to	 create processes,	 since	 fork()	 copies the
address space	 of the	 parent to	 the	 child.

13

o	 Interesting,	 Windows is vulnerable	 to	 BROP because Windows has no
fork()	 equivalent.

•	 Sleep-‐on-‐crash?
o	 Now a BROP	 attack is a denial-‐of-‐service!

•	 Bounds-‐checking?
o	 Up to 2x performance overhead . . .

More info on	 ROP and x86 calling	 conventions:

•	 http://www.slideshare.net/saumilshah/dive-into-rop-a-quick-introduction-to
return-oriented-programming

•	 https://cseweb.ucsd.edu/~hovav/dist/rop.pdf

14

https://cseweb.ucsd.edu/~hovav/dist/rop.pdf
http://www.slideshare.net/saumilshah/dive-into-rop-a-quick-introduction-to-return-oriented-programming
http://www.slideshare.net/saumilshah/dive-into-rop-a-quick-introduction-to-return-oriented-programming

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

15

http://ocw.mit.edu
http://ocw.mit.edu/terms

