

6.858 Lecture 12
TCP/IP security

Threat model for network security:
• Adversary can intercept / modify network traffic.
• Adversary can send packets.
• Adversary has full control of their own machines.
• Adversary can participate in protocols (usually).

o Often	 not feasible to keep bad guys out of a large systems.

Eavesdropping	 on packets.
• Important to keep in mind, but relatively well understood.
• Any data sent over the network can be observed by an adversary.

Sending / spoofing packets.
• IP allows sender to construct an	 arbitrary	 packet.
• In particular,	 sender can fill	 in any source	 address.
• Can	 pretend that a packet is coming from any address.
• What	 can	 an adversary do with this?

Easy target: trigger bugs in some implementation.
• Author isn't so interested in this class of problems.
• Instead,	 want to look at "protocol-‐level	 problems".
• What	 is a protocol-‐level	 problem?

o A problem inherent in the design.
o A correct implementation will have this problem.

• Why is it so important?
o Can	 fix implementation bugs.
o To fix protocol-‐level	 bugs, might need to change protocol!
o Might be incompatible with existing systems.
o As we will see, sometimes possible to come up with compatible fixes.

TCP	 sequence number attack.
Standard	 handshake (figure	 on the right	 side of page 2):

C: SRC=C, DST=S, SYN(SNc)

S: SRC=S, DST=C, SYN(SNs), ACK(SNc)

C: SRC=C, DST=S, ACK(SNs)

C: SRC=C, DST=S, data(SNc), ACK(SNs)

How	 does the adversary know the data is coming from the client?
• Only the client	 should have been	 able to receive the second	 message.
• Thus, only	 the	 client should	 know SNs.
• Third message is rejected, unless it has the right SNs value.
Suppose adversary A wants to simulate a connection to S from C.	 (Assume A knows
C's IP	 address	 -‐-‐ usually	 not a big deal	 in practice.)

1

A: SRC=C, DST=S, SYN(SNc)
S: SRC=S, DST=C, SYN(SNs), ACK(SNc)

A: SRC=C, DST=S, ACK(SNs) -- but how to guess SNs?

A: SRC=C, DST=S, data(SNc)

Where does the adversary get	 SNs?
•	 TCP	 specification suggested a specific way to choose them.
•	 In particular, increment at a ~constant rate: ~250,000 per second.
•	 Why so specific?

o	 Subtle interactions with reused connections (src/dst port numbers).
o	 Want to avoid old packets (from past conns) interfering with new conn.
o	 [Ref: RFC 1185 appendix]

•	 If adversary	 knows a recent sequence number, can guess the next one.
o Impl would actually bump ISN every second, making it easy to guess.

What	 happens to the real	 packet	 that	 S sends to C (second pkt)?
•	 C would assume the packet is from an old conn, send RST in response.
•	 Even if that RST was sent,	 adversary	 could try	 to race	 before	 RST arrives.
• Luckily, there	 was	 another	 curious	 bug;	 will get to	 it later.
But why do sequence number attacks turn into a security problem?

1. Spoof	 connections	 to	 applications	 that rely	 on	 IP addresses.
•	 E.g., Berkeley remote access tools: rlogin, rsh, rcp.
•	 Allowed login without a password, if connection came from a "trusted" system.

o	 Required connection to come from a trusted source port (512-‐1023).
§ Why this requirement?

o	 Trusted	 rlogin/rsh/rcp	 program sent the client's username.
o	 If username was the same as the account on the server, no password

needed.
o	 E.g.: "rsh athena.dialup.mit.edu ls".

•	 Made a bad assumption about what the TCP	 layer provided.
o	 Assumed TCP	 conn from an IP address meant it really came from that

host.
•	 If adversary can guess SNs, then can simulate connection from trusted host.

o	 Issue any command using rsh.
o	 Could	 change the user's .rhosts file to allow login from attacker's host.
o	 Then connect directly without having to simulate a connection.

•	 Host-‐based	 authentication seems like a bad plan.
o	 Especially relying on "trusted" vs "untrusted" ports on a machine.
o	 Still in some use today: e.g., SMTP for outgoing mail.

•	 Actually rlogin authentication was even worse: they authenticated by hostname.
o	 Where does hostname come from? Reverse DNS lookup.
o	 E.g., 18.26.4.9: find the PTR record of 9.4.26.18.in-‐addr.arpa.
o	 Owner of that domain can set PTR record to any hostname!
o	 (Can	 make a slight improvement: check if host resolves to same addr.)
o	 Similar problems show up in log files: log resolved (untrusted) hostname.

2

2. Denial of service attack:	 connection	 reset.
•	 Once we know	 SNc,	 can send a RST packet.
•	 Worse yet: server will	 accept	 a RST packet	 for any SNc value within	 window.
•	 With a large window	 (~32K=2^15),	 only	 need 2^32/2^15	 = 2^17 guesses.

How bad	 is a connection reset?
•	 One target	 of such attacks were the TCP	 connections between	 BGP	 routers.
•	 Causes	 routers to assume link failure, could affect traffic for minutes.
•	 Solutions:

o	 TTL hack (255).
o	 MD5 header	 authentication	 (very specialized	 for router-‐to-‐router	 links).

3. Hijack existing	 connections.
•	 In similar vein, can also inject data into an existing connection.
•	 All adversary needs to know is the current SNc.

How	 to mitigate this problem?
•	 Baseline:	 don't rely	 on IP	 addresses	 for authentication.

o	 Use encryption	 / authentication	 at a higher level.
o	 Next lecture:	 Kerberos.
o	 But still,	 want to fix	 the situation	 we're in,	 for TCP.

•	 ISPs can filter packets sent by their customers.
o	 Often done today for small customers, but not consistently.
o	 Not straightforward for customers with complex networks,

multihoming…

How to	 patch	 up TCP?
•	 Can't	 choose ISN's in a completely random way, without violating TCP	 spec.

o	 Might	 break	 connection	 (port) reuse guarantees.
•	 Random increments?

o	 Should preserve increment rate (~250k/second).
o	 Not a huge amount of randomness (say, low 8 bits per increment).

•	 Aside: must be careful about how we generate random numbers!
o	 Common	 PRNG: linear congruential generator: R_k = A*R_{k-‐1}+B mod N.
o	 Not secure:	 given one pseudo-‐random	 value, can guess the next one!
o	 Lots	 of better	 cryptographically	 secure	 PRNGs	 are	 available.

§ Ideally,	 use	 your kernel's built-‐in	 PRNG (/dev/random
/dev/urandom)

§ Ref: http://en.wikipedia.org/wiki/Fortuna_(PRNG), or any stream	
cipher like	 http://en.wikipedia.org/wiki/RC4

•	 However, SN	 values	 for different src/dst pairs	 never	 interact!
•	 So, can choose the ISN using a random offset for each src/dst pair.

o	 Nice trick:	 ISN	 = ISN_oldstyle	 + F(srcip,	 srcport,	 dstip,	 dstport,	 secret)
o	 F is	 some pseudo-‐random function; roughly, think SHA1.

3

http://en.wikipedia.org/wiki/Fortuna_(PRNG)
http://en.wikipedia.org/wiki/RC4

o Requires	 no extra	 state to keep track	 of per-‐connection	 ISNs.

Are sequence number attacks still relevant?
• Most operating systems implement the per-‐connection	 ISN workaround	 above.

o Ref: Linux	 secure_tcp_sequence_number	 in net/core/secure_seq.c
• But other protocols suffer from almost identical problems -‐-‐ e.g., DNS.

o DNS runs over UDP, no seq numbers, just ports, and dst port fixed (53).
o If adversary knows client is making a query, can fake a response.

§ Just need	 to	 guess src port,	 often	 predictable.
o Problem gained popularity in 2008, though well-‐understood by djb

before.
§ Ref: http://cr.yp.to/djbdns/forgery.html
§ Ref: http://unixwiz.net/techtips/iguide-kminsky-dns-vuln.html

o Solution: carefully	 take advantage of all possible randomness!
§ DNS queries	 contain 16-‐bit	 query ID, and can randomize ~16 bit

src port.
o Solution: deploy DNSSEC (signed DNS records, including missing

records).
o One problem: key distribution (who is allowed to sign each domain?)
o Another problem: name enumeration (to sign "no such name" responses).

§ Partially mitigated by NSEC3: http://tools.ietf.org/html/rfc5155
o Slow adoption, not much incentive to upgrade, non-‐trivial	 costs.
o Costs	 include both performance and administrative (key/cert

management).

SYN flooding.
• Note that server must store some state when it receives a SYN packet.

o Called	 a half-‐open	 connection:	 replied	 with	 SYN-‐ACK,	 waiting for the ACK.
• What if it receives SYN messages frommany sources?

o Many implementations try to keep state for all	 half-‐open	 connections.
o But eventually run out of memory, must reject connections!

• Annoying problem: we don't even know who we're keeping state for!
o Adversary could have a single host, and generate SYNs frommany src IPs.

• Denial-‐of-‐service	 attack:	 big	 asymmetry	 between client + server resources.
o Client	 spoofs a single packet (less than 1 millisecond).
o Server wastes memory until connection times out (minutes).

Defense	 for SYN	 flooding:	 SYN	 cookies.
• Idea: make the server stateless, until it receives that third packet (ACK).
• Why is this tricky?

o Need to ensure an adversary can't make up a conn from any src address.
o Previously, this was done by storing ISNs, and expecting it in the ACK.

• Use a bit of cryptography to achieve similar goal.
• Encode	 server-‐side	 state	 into sequence number.

o ISNs = MAC_k(src/dst	 addr+port, timestamp) || timestamp

4

http://cr.yp.to/djbdns/forgery.html
http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html
http://tools.ietf.org/html/rfc5155

o Timestamp is coarse-‐grained (e.g., minutes).
o Server stores	 secret	 key k, not shared	 with anyone else.
o Detailed ref: http://cr.yp.to/syncookies.html

• Server computes seq as above	 when	 sending SYN-‐ACK	 response.
• Server can verify state is intact by verifying hash (MAC)	 on ACK's	 seq.

o Not quite ideal: need to think about replay attacks within timestamp.
• Another problem: if third packet lost, noone retransmits.

o Maybe not	 a big	 deal	 in case of a DoS attack.
o Only a problem for protocols where server speaks first.

Another DoS attack vector: bandwidth amplification.
• Send ICMP	 echo request	 (ping) packets to the broadcast	 address	 of a network.

o E.g., 18.26.7.255.
o Used to	 be	 that you'd get an ICMP	 echo reply from all machines on

network.
o What if you fake a packet from victim's address? Victim	 gets all replies.
o Find a subnet with 100 machines on a fast network: 100x amplification!
o Ref: http://en.wikipedia.org/wiki/Smurf_attack

• Can we	 fix this?
o Routers	 now block "directed	 broadcast"	 (packets sent to broadcast

address).
• Modern-‐day	 variant: DNS amplification.

o DNS is also	 a request-‐response	 service.
o With a small query, server might send back a large response.
o With DNSSEC,	 responses contain	 lots of signatures,	 so they're	 even larger!
o Since DNS runs over UDP, source address is completely unverified.
o Ref: http://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-

attack
• Can we	 fix the	 DNS attack?

o Actually quite hard! Root name servers must answer to queries from
anyone.

• What	 if we had a chance to re-‐design	 DNS from scratch?
o One possible plan: query must be as big as response (require padding).
o General technique: force client to expend at least as much work.

TCP congestion	 control.
• Receiver can get	 the sender to speed up, by ACKing	 unreceived segments. Or

send more ACKs	 (e.g., send ACK	 for each byte instead of every packet).

Routing protocols:	 overly-‐trusting	 of participants.
• ARP: within a single Ethernet network.

o To send IP packet,	 need the	 Ethernet	 MAC address of router / next hop.
o Address Resolution Protocol (ARP): broadcast a request for target's MAC.
o Anyone can listen to broadcast, send a reply; no authentication.

5

http://cr.yp.to/syncookies.html
http://en.wikipedia.org/wiki/Smurf_attack
http://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack
http://blog.cloudflare.com/deep-inside-a-dns-amplification-ddos-attack

o Adversary can impersonate router, intercept packets, even on switched
net.

o Potential solution: make the switch in charge of ARP.
§ Not widely deployed: would require managing MAC/IP	 addresses

carefully.

• DHCP: again, within a single	 Ethernet network.
o Client asks	 for IP	 address	 by	 sending a broadcast request.
o Server responds,	 no authentication	 (some specs exist but not widely

used).
§ If you just plugged into a network, might not know what to expect.

o Lots of fields: IP address, router address, DNS server, DNS domain list, ..
o Adversary can impersonate DHCP	 server to new clients on the network.

§ Can	 choose their DNS servers, DNS domains, router, etc.

o Also, DoS attack on server: ask for lots of leases, frommany MAC addrs.
o Solution: make the switch in charge of DHCP	 (forward reqs to real

server).
§ Not widely	 deployed:	 would	 require	 careful switch configuration.
§ Even more complicated on a wireless network.

• BGP: Internet-‐wide	 (similar to RIP attacks described in paper).
o Any BGP participant router can announce route to a prefix.
o What	 if adversary has a router?	 Can	 announce any prefix	 or route.
o Is this problem still relevant?

§ Spammers often exploit this: announce an unused address, and
send spam.

§ Gets	 around	 IP-‐level	 blacklisting of spam senders: choose almost
any IP!

o How to	 fix?
§ SBGP: cryptographic signing of route announcements.
§ Must	 know	 who is allowed	 to	 announce	 every particular	 IP prefix.
§ Requires someone to distribute keys / certificates for every IP

prefix.
§ Bootstrapping problem is tricky; some performance overheads

too.
§ Getting some traction but still not widely deployed.

Many other problems too.
• ICMP	 messages like redirect: no authentication, basically unused now.
• Exposing too much information (netstat, SNMP, finger): mostly fixed.
• identd ("Authentication Service"): bad design, no real authentication.
• Email: real problem but no practical solutions	 yet.

o Authentication vs authorization.
o E.g., PGP would not solve the spam problem.

• Passwords	 in protocols:	 supporting	 ONLY passwords	 isn't so great.

6

o We'll talk about	 alternatives in	 a few	 weeks.
• FTP data transfer	 protocol.

o Server connects back	 to client	 to send a file to the client.
o Client	 tells the server what IP address and port number to use.
o Could	 be	 used	 for port-‐scanning	 from server's IP.
o Could	 be used to send any traffic (embedded in file) from server's IP.

§ E.g., back to IP authentication	 problems: rlogin, spam, etc.

How do adversaries	 know what software	 / protocol you are	 running?
• Probing:

o Check	 if a system is listening on a well-‐known	 port.
o Protocols / systems often send an initial banner message.

• nmap can guess OS by measuring various impl-‐specific	 details.
o Ref: http://nmap.org/book/man-os-detection.html

• Use DNS to look up the hostname for an IP address; may give hints.
• Guessing: assume system is vulnerable, try to exploit bug.

How	 do adversaries know the IP address of the system to attack?
• traceroute to find routers along	 the way,	 for BGP attacks.
• Can also	 just scan the	 entire	 Internet:	 only	 2^32 addresses.

o 1 Gbps (100 MB/s) network link, 64 byte minimum packets.
o ~1.5M	 packets per second.
o 2^32=4B packets in ~2500 seconds, or 45 minutes.
o zmap: implementation of this [Ref: https://zmap.io/]

Why are things so insecure at the TCP/IP level?
• Historically,	 designers did not worry as much about security.

o Even Bellovin says: "The Internet in 1989 was a much friendlier place".
o Original	 Internet	 had a small number of relatively trustworthy users.
o Design requirements changed over time.

• End-‐to-‐end	 argument in action.
o Must	 provide security at the application	 level	 anyway.
o Things are	 "good enough" at the	 transport level to	 let application	 work.

• Some	 fixes do get added, but only for the worst problems / easier solutions.

How	 to improve security?
• Protocol-‐compatible	 fixes to TCP implementations.
• Firewalls.

o Partial fix,	 but widely	 used.
o Issue: adversary may be within firewalled network.
o Issue: hard to determine if packet is "malicious" or not.
o Issue: even for fields that are	 present	 (src/dst),	 hard to authenticate.
o TCP/IP's	 design not a good match for firewall-‐like filtering	 techniques.
o E.g., IP packet fragmentation: TCP	 ports in one packet, payload in another.

• Implement security on top of TCP/IP:	 SSL/TLS, Kerberos, SSH,	 etc.

7

https://zmap.io/

o Beware: this paper isn't	 clear on	 encryption	 vs.	 authentication.
o Will talk about this more in next lecture on Kerberos.

• Use cryptography (encryption, signing, MACs,	 etc).
o Quite a hard problem: protocol design, key distribution, trust, etc.

• Some kinds of security hard to provide on top: DoS-‐resistance, routing.
• Deployment of replacement protocols: SBGP, DNSSEC.	

8

MIT OpenCourseWare
http://ocw.mit.edu

6.858 Computer Systems Security
Fall 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

