Lecture 19: Microscopic Interactions

OUTLINE

- 1. Motivation
- 2. Feedback & Electron Screening
- 3. Feedback & Phonon Screening
- 4. The electron-phonon interaction

November 15, 2005

— Massachusetts Institute of Technology-6.763 2005 Lecture 19

Motivation: Dielectric Constant

$$\Phi_{ extsf{tot}} = rac{q}{4\pi\epsilon} rac{1}{r}$$
 Potential for point charge in a dielectric media

$$\Phi_{ extsf{tot}} = rac{q}{4\pi\epsilon_o}rac{1}{r}$$
 Potential for point charge in free space

$$\Phi_{\text{tot}} = \frac{1}{\tilde{\epsilon}} \Phi_{\text{ext}}$$

Output = Transfer function * Input

Massachusetts Institute of Technology-6.763 2005 Lecture 19

Dielectric Constant

Total Charge and Total Potential

$$\nabla^2 \Phi_{\text{tot}}(\mathbf{r}, t) = -\frac{\rho_{\text{tot}}(\mathbf{r}, t)}{\epsilon_0}$$

External Charge and External Potential

$$\nabla^2 \Phi_{\text{tot}}(\mathbf{r}, t) = -\frac{\rho_{\text{tot}}(\mathbf{r}, t)}{\epsilon_o} \quad \nabla^2 \Phi_{\text{ext}}(\mathbf{r}, t) = -\frac{\rho_{\text{ext}}(\mathbf{r}, t)}{\epsilon_o}$$

Use Fourier Transform
$$f(\mathbf{r},t) = \int_{-\infty}^{+\infty} \frac{d\mathbf{k}}{(2\pi)^3} \int_{-\infty}^{+\infty} \frac{d\omega}{2\pi} f(\mathbf{k},\omega) e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$$

$$\Phi_{\mathsf{tot}}(\mathbf{k},\omega) = \frac{1}{\epsilon_o k^2} \rho_{\mathsf{tot}}(\mathbf{k},\omega)$$

$$\Phi_{\text{tot}}(\mathbf{k}, \omega) = \frac{1}{\epsilon_o k^2} \rho_{\text{tot}}(\mathbf{k}, \omega)$$
 $\rho_{\text{ext}}(\mathbf{k}, \omega) = \epsilon_o k^2 \Phi_{\text{ext}}(\mathbf{k}, \omega)$

Block Diagrams of the Algebra

$$\rho_{\mathsf{tot}}(\mathbf{k}, \omega) \longrightarrow \boxed{\frac{1}{\epsilon_o k^2}} \longrightarrow \Phi_{\mathsf{tot}}(\mathbf{k}, \omega) \qquad \Phi_{\mathsf{ext}}(\mathbf{k}, \omega) \longrightarrow \boxed{\epsilon_o k^2} \longrightarrow \rho_{\mathsf{ext}}(\mathbf{k}, \omega)$$

Massachusetts Institute of Technology-6.763 2005 Lecture 19

Screening Charge

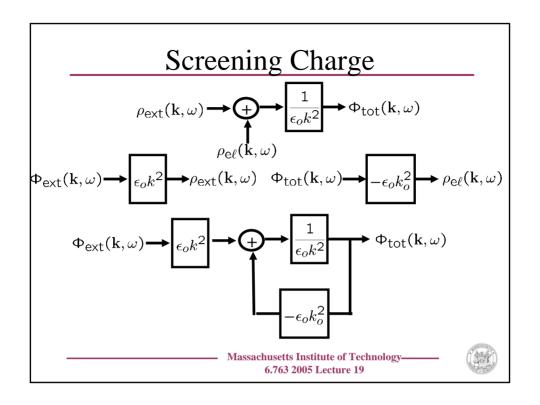
$$\rho_{\mathsf{tot}}(\mathbf{r},t) = \rho_{\mathsf{ext}}(\mathbf{r},t) + \rho_{\mathsf{el}}(\mathbf{r},t)$$

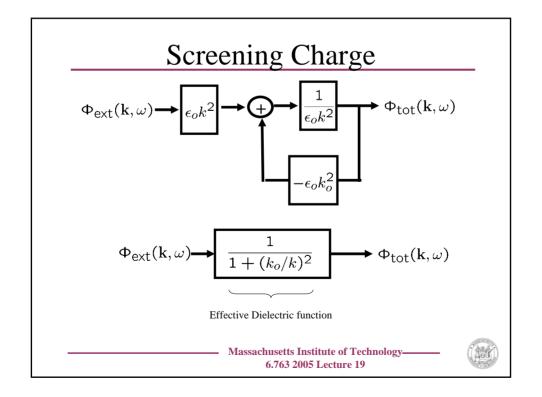
$$\rho_{\mathsf{ext}}(\mathbf{k},\omega) \rightarrow \rho_{\mathsf{ext}}(\mathbf{k},\omega) \quad \Phi_{\mathsf{tot}}(\mathbf{k},\omega) \rightarrow \rho_{\mathsf{el}}(\mathbf{k},\omega)$$

$$\rho_{\mathsf{ext}}(\mathbf{k},\omega) \rightarrow \rho_{\mathsf{ext}}(\mathbf{k},\omega) \quad \Phi_{\mathsf{tot}}(\mathbf{k},\omega) \rightarrow \rho_{\mathsf{el}}(\mathbf{k},\omega)$$

The screening effect is produced by the positive background charge and hence is of opposite sign.

Massachusetts Institute of Technology-6.763 2005 Lecture 19





Thomas-Fermi Screening

$$\Phi_{\mathsf{ext}}(\mathbf{k},\omega) \longrightarrow \frac{1}{1+(k_o/k)^2} \longrightarrow \Phi_{\mathsf{tot}}(\mathbf{k},\omega)$$

$$\Phi_{\text{tot}}(\mathbf{k},\omega) = \frac{1}{1 + (k_o/k)^2} \Phi_{\text{ext}}(\mathbf{k},\omega)$$

For a point 'test' charge

$$\Phi_{\text{tot}}(\mathbf{k}, \omega) = \frac{1}{1 + (k_o/k)^2} \frac{q}{\epsilon_o k^2} = \frac{q}{\epsilon_o} \frac{1}{k^2 + k_o^2}$$

The inverse Fourier Transform gives

$$\Phi_{\text{tot}}(\mathbf{r},t) = \frac{q}{4\pi\epsilon_o} \frac{e^{-k_o r}}{r}$$

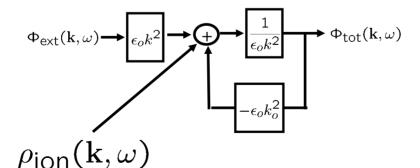
Thomas-Fermi Screening

is like Debye-Hueckel screening k_0 is the thomas-fermi screeing length and is about one Angstrom

Massachusetts Institute of Technology———6.763 2005 Lecture 19

Dynamical Screening from the positive ions

$$\rho_{\text{tot}}(\mathbf{k},\omega) = \rho_{\text{ext}}(\mathbf{k},\omega) + \rho_{\text{el}}(\mathbf{k},\omega) + \rho_{\text{ion}}(\mathbf{k},\omega)$$



Need a simple model of the dynamics for the ion charge.

Massachusetts Institute of Technology———6.763 2005 Lecture 19

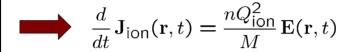
Model of Dynamics of Ions

Treat each positively charged ion as a free particle acted on by the total Electric Field

$$M \frac{d}{dt} \mathbf{v}_{\mathsf{ion}}(\mathbf{r}, t) = Q_{\mathsf{ion}} \mathbf{E}(\mathbf{r}, t)$$

And the resulting current density of the ions is

$$\mathbf{J}_{\mathsf{ion}} = nQ_{\mathsf{ion}}\mathbf{v}_{\mathsf{ion}}(\mathbf{r},t)$$



This looks just like our first London Equation for charged particles with no damping.

Massachusetts Institute of Technology
 6.763 2005 Lecture 19

Model of Dynamics of Ions (cont.)

The continuity equation gives

$$\frac{\partial}{\partial t}\rho_{\mathsf{ion}} + \nabla \cdot \mathbf{J}_{\mathsf{ion}} = 0$$

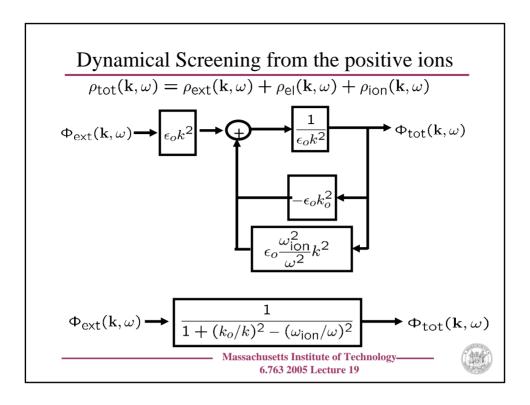
Combine with previous equation to give:

$$\frac{\partial^2}{\partial t^2} \rho_{\text{ion}} = -\frac{nQ_{\text{ion}}^2}{M} \nabla \cdot \mathbf{E} = \frac{nQ_{\text{ion}}^2}{M} \nabla^2 \Phi_{\text{tot}}(\mathbf{r}, t)$$

$$\rho_{\mathsf{ion}}(\mathbf{k},\omega) = \epsilon_o \frac{\omega_{\mathsf{ion}}^2}{\omega^2} k^2 \, \Phi_{\mathsf{tot}}(\mathbf{k},\omega)$$

$$\Phi_{\text{tot}}(\mathbf{k},\omega) \longrightarrow \epsilon_0 \frac{\omega_{\text{ion}}^2 k^2}{\omega^2} \longrightarrow \rho_{\text{ion}}(\mathbf{k},\omega)$$

Massachusetts Institute of Technology
 6.763 2005 Lecture 19





$$\Phi_{\text{ext}}(\mathbf{k},\omega) \rightarrow \underbrace{\frac{1}{1 + (k_o/k)^2 - (\omega_{\text{jon}}/\omega)^2}} \quad \Phi_{\text{tot}}(\mathbf{k},\omega)$$

$$\frac{1}{\tilde{\epsilon}(\mathbf{k},\omega)} = \frac{1}{1 + (k_o/k)^2} \left(\frac{\omega^2}{\omega^2 - \omega_\ell^2(\mathbf{k})} \right)$$

$$\omega_\ell(\mathbf{k}) \equiv \sqrt{\frac{\omega_{\text{jon}}^2}{1 + (k_o/k)^2}} \quad \overrightarrow{k \ll k_o} \frac{\omega_{\text{jon}}}{k_o} k$$

Sound waves with the velocity of sound $u=\omega_{\mathrm{ion}}/k_{\mathrm{o}}$

Massachusetts Institute of Technology———6.763 2005 Lecture 19

