6.730 Physics for Solid State Applications

Lecture 15: Electrons in a Periodic Solid

<u>Outline</u>

- Review 2-D Tight-binding
- 3-D Tight-binding
- Semiconductor Fermi Energy
- Silicon Bandstructure

2D Monatomic Square Crystals

$$g_{0} = e^{-ik_{x}a} + e^{ik_{x}a} + e^{-ik_{y}a} + e^{ik_{y}a}$$

$$g_{1} = e^{-ik_{x}a} - e^{ik_{x}a} \qquad g_{2} = -e^{-ik_{y}a} + e^{+ik_{y}a}$$

$$g_{3} = e^{-ik_{y}a} + e^{ik_{y}a} \qquad g_{4} = e^{-ik_{x}a} + e^{ik_{x}a}$$

2D Monatomic Square Crystals Dispersion Relations

2D Monatomic Square Crystals Dispersion Relations

n=1,2,3 & 4

2D Monatomic Square Crystals Variations with Lattice Constant

2D Monatomic Square Crystals Dispersion Relations

2D Monatomic Square Crystals Fermi Energy

How many states per band ?

$$2 \cdot \frac{\text{Area of BZ}}{\text{Area per state}} = \frac{2 \cdot \left(\frac{2\pi}{a}\right)^2}{\left(\frac{2\pi}{L}\right)^2} = 2n$$

where *n* is the areal density of atoms

To estimate Fermi energy we need to know the number of outermost valence electrons each atom has...

Ι	Π	III	IV	V	VI	VII	VIII
11	12	13	14	15	16	17	18
Na	Mg	Al	Si	Р	S	Cl	Ar

2D Monatomic Square Crystals Dispersion Relations

LCAO Basis for FCC Crystals

Tight-binding for 3-D Crystals

$$\psi(\mathbf{r}) = \sum_{lpha} \sum_{\mathbf{n}=\mathbf{R}_{\ell}} \mathbf{c}_{lpha}[\mathbf{R}_{\ell}] \phi_{lpha}(\mathbf{r}-\mathbf{R}_{\ell})$$

Best estimate for energy with LCAO basis....

$$\sum_{\alpha} \sum_{\mathbf{R}_{\mathbf{m}}} \widetilde{\mathbf{H}}_{\beta,\alpha}(\mathbf{R}_{\mathbf{n}},\mathbf{R}_{\mathbf{m}}) \mathbf{c}_{\alpha}[\mathbf{R}_{\mathbf{m}}] = \mathbf{E} \sum_{\alpha} \sum_{\mathbf{R}_{\mathbf{p}}} \widetilde{\mathbf{S}}_{\beta,\alpha}(\mathbf{R}_{\mathbf{n}},\mathbf{R}_{\mathbf{p}}) \mathbf{c}_{\alpha}[\mathbf{R}_{\mathbf{p}}]$$

Hamiltonian matrix....

$$\widetilde{\mathrm{H}}_{eta,lpha}(\mathrm{R}_{\mathrm{n}},\mathrm{R}_{\mathrm{m}}) = \langle \phi_{eta}(\mathrm{r}-\mathrm{R}_{\mathrm{n}}) | \hat{\mathcal{H}} | \phi_{lpha}(\mathrm{r}-\mathrm{R}_{\mathrm{m}})
angle$$

Overlap matrix....

$$\widetilde{\mathbf{S}}_{eta,lpha}(\mathbf{R_n},\mathbf{R_p}) = \langle \phi_eta(\mathbf{r}-\mathbf{R_n}) | \phi_lpha(\mathbf{r}-\mathbf{R_p})
angle$$

Tight-binding for 3-D Crystals

$$\psi(\mathbf{r}) = \sum_{lpha} \sum_{\mathbf{n}=\mathbf{R}_\ell} \mathbf{c}_{lpha}[\mathbf{R}_\ell] \phi_{lpha}(\mathbf{r}-\mathbf{R}_\ell)$$

Since the probability of finding electrons at each lattice site is equal...

$$\mathbf{c}[\mathbf{R}_{n} + \mathbf{R}_{\ell}] = \mathbf{e}^{\mathbf{i}\mathbf{k}\cdot\mathbf{R}_{\ell}}\mathbf{c}[\mathbf{R}_{n}] \qquad \qquad \mathbf{c}[\mathbf{R}_{n}] = \mathbf{e}^{\mathbf{i}\mathbf{k}\cdot\mathbf{R}_{n}}\tilde{\boldsymbol{\epsilon}}$$

Consequently...

$$\mathbf{H}(\mathbf{k})\,\tilde{\boldsymbol{\epsilon}} = \mathbf{E}\,\mathbf{S}(\mathbf{k})\,\tilde{\boldsymbol{\epsilon}}$$

$$\mathrm{H}(\mathrm{k}) = \sum_{\mathrm{R}_{\mathrm{p}}} \widetilde{\mathrm{H}}(\mathrm{R}_{\mathrm{p}}) \mathrm{e}^{-\mathrm{i}\mathrm{k}\cdot\mathrm{R}_{\mathrm{p}}}$$

$$\mathbf{S}(\mathbf{k}) = \sum_{\mathbf{R}_{p}} \widetilde{\mathbf{S}}(\mathbf{R}_{p}) \mathbf{e}^{-\mathbf{i}\mathbf{k}\cdot\mathbf{R}_{p}}$$

Energy Band for 1-D Lattice Two orbital, single atom basis Hamiltonian Matrix

$$E_s = \langle \phi_s(\mathbf{r}) | \hat{\mathcal{H}} | \phi_s(\mathbf{r}) \rangle \qquad \qquad E_p = \langle \phi_p(\mathbf{r}) | \hat{\mathcal{H}} | \phi_p(\mathbf{r}) \rangle$$

$$V_{ss\sigma} = \langle \phi_s(\mathbf{r}) | \hat{\mathcal{H}} | \phi_s(\mathbf{r} - a \mathbf{i}_x) \rangle$$

$$V_{sp\sigma} = \langle \phi_s(\mathbf{r}) | \hat{\mathcal{H}} | \phi_{\mathbf{p}_x}(\mathbf{r} - \mathbf{ai}_x) \rangle$$

$$V_{pp\sigma} = \langle \phi_{p_x}(\mathbf{r}) | \hat{\mathcal{H}} | \phi_{\mathbf{p}_x}(\mathbf{r} - \mathbf{a}\mathbf{i}_x) \rangle$$

$$V_{pp\pi} = \langle \phi_{py}(\mathbf{r}) | \hat{\mathcal{H}} | \phi_{\mathbf{py}}(\mathbf{r} - \mathbf{ai_x}) \rangle$$

Orbital Overlaps for 3-D Crystals Diamond and Zincblende

$$V_{\ell\ell'm} = \eta_{\ell\ell'm} \frac{\hbar^2}{2md^2}$$

 $\eta_{ss\sigma} = -1.40 \approx -9\pi^2/64$ $\eta_{pp\sigma} = 3.24$

 $\eta_{pp\pi} = -0.81$ $\eta_{sp\sigma} = 1.84$

Orbital Overlaps for 3-D Crystals

Orbital Overlaps for 3-D Crystals

 $\langle \phi_{p1} | \hat{\mathcal{H}} | \phi_{p2} \rangle = (\hat{\mathbf{d}} \cdot \hat{\mathbf{b}}_1) (\hat{\mathbf{d}} \cdot \hat{\mathbf{b}}_2) V_{pp\sigma} + [\hat{\mathbf{b}}_1 - \hat{\mathbf{d}} (\hat{\mathbf{b}}_1 \cdot \hat{\mathbf{d}})] \cdot [\hat{\mathbf{b}}_2 - \hat{\mathbf{d}} (\hat{\mathbf{b}}_2 \cdot \hat{\mathbf{d}})] V_{pp\pi}$

$$\langle \phi_{s1} | \hat{\mathcal{H}} | \phi_{p_{y2}} \rangle = V_{sp\sigma} cos \Theta = V_{sp\sigma} \frac{1}{\sqrt{3}}$$

 $\langle \phi_{p_{y1}} | \hat{\mathcal{H}} | \phi_{p_{y2}} \rangle = V_{pp\sigma} cos^2 \Theta + V_{pp\pi} sin^2 \Theta = V_{pp\sigma} \frac{1}{3} + V_{pp\pi} \frac{2}{3}$

Zincblende LCAO Bands Reduced Hamiltonian Matrix

	$ \phi_{s1} angle$	$ \phi_{p_x 1} angle$	$ \phi_{p_y 1} angle$	$ \phi_{p_z 1} angle$	$ \phi_{s2} angle$	$ \phi_{p_{x}2} angle$	$ \phi_{py2} angle$	$ \phi_{p_z 2} angle$,
$\langle \phi_{s1} $	E_s	0	0	0	$E_{ss}g_0$	$E_{sp}g_1$	$E_{sp}g_2$	$E_{sp}g_{3}$)
$\langle \phi_{p_x} 1 $	0	E_p	0	0	$-E_{sp}g_1$	$E_{xx}g_0$	$E_{xy}g_{3}$	$E_{xy}g_2$
$\langle \phi_{p_y 1} $	0	0	E_p	0	$-E_{sp}g_2$	$E_{xy}g_{3}$	$E_{xx}g_0$	$E_{xy}g_1$
$\langle \phi_{p_z 1} $	0	0	0	E_p	$-E_{sp}g_{3}$	$E_{xy}g_2$	$E_{xy}g_1$	$E_{xx}g_0$
$\langle \phi_{s2} $	$E_{ss}g^*_0$	$-E_{sp}g_1^*$	$-E_{sp}g_2^*$	$-E_{sp}g_3^*$	E_s	0	0	0
$\langle \phi_{p_x 2} $	$E_{sp}g_1^*$	$E_{xx}g_0^*$	$E_{xy}g_{\sf 3}^*$	$E_{xy}g_2^*$	0	E_p	0	0
$\langle \phi_{p_y 2} $	$E_{sp}g_2^*$	$E_{xy}g_{\sf 3}^*$	$E_{xx}g_{0}^{*}$	$E_{xy}g_{1}^{*}$	0	0	E_p	0
$\langle \phi_{p_z 2} $	$\left(E_{sp}g_{3}^{*}\right)$	$E_{xy}g_2^*$	$E_{xy}g_1^*$	$E_{xx}g^*_0$	0	0	0	E_p)

$$E_{ss} = V_{ss\sigma}$$

$$E_{xy} = \frac{1}{3}V_{pp\sigma} - \frac{1}{3}V_{pp\pi}$$

Zincblende LCAO Bands Nearest Neighbors

$$\begin{split} \mathbf{R}_2 &= -\frac{\mathbf{a}}{2}(\hat{\mathbf{y}} + \hat{\mathbf{z}}) \\ \mathbf{R}_3 &= -\frac{\mathbf{a}}{2}(\hat{\mathbf{z}} + \hat{\mathbf{x}}) \\ \mathbf{R}_4 &= -\frac{\mathbf{a}}{2}(\hat{\mathbf{x}} + \hat{\mathbf{y}}) \end{split}$$

Zincblende LCAO Bands Reduced Hamiltonian Matrix

	$ \phi_{s1} angle$	$ \phi_{p_{x}}$ 1 $ angle$	$ \phi_{p_y}{1} angle$	$ \phi_{p_{z}}$ 1 $ angle$	$ \phi_{s2} angle$	$ \phi_{p_{x}}$ 2 $ angle$	$ \phi_{py2} angle$	$ \phi_{p_z 2} angle$,
$\langle \phi_{s1} $	E_s	0	0	0	$E_{ss}g_0$	$E_{sp}g_1$	$E_{sp}g_2$	$E_{sp}g_{3}$
$\langle \phi_{p_x} 1 $	0	E_p	0	0	$-E_{sp}g_1$	$E_{xx}g_0$	$E_{xy}g_{3}$	$E_{xy}g_2$
$\langle \phi_{p_y 1} $	0	0	E_p	0	$-E_{sp}g_2$	$E_{xy}g_{3}$	$E_{xx}g_0$	$E_{xy}g_1$
$\langle \phi_{p_z 1} $	0	0	0	E_p	$-E_{sp}g_{3}$	$E_{xy}g_2$	$E_{xy}g_1$	$E_{xx}g_0$
$\langle \phi_{s2} $	$E_{ss}g_0^*$	$-E_{sp}g_1^*$	$-E_{sp}g_2^*$	$-E_{sp}g_3^*$	E_{s}	0	0	0
$\langle \phi_{p_x 2} $	$E_{sp}g_1^*$	$E_{xx}g_0^*$	$E_{xy}g_{\sf 3}^*$	$E_{xy}g_2^*$	0	E_p	0	0
$\langle \phi_{py2} $	$E_{sp}g_2^*$	$E_{xy}g_{\sf 3}^*$	$E_{xx}g_0^*$	$E_{xy}g_1^*$	0	0	E_p	0
$\langle \phi_{p_z 2} $	$\langle E_{sp}g_3^*$	$E_{xy}g_2^*$	$E_{xy}g_1^*$	$E_{xx}g^*_{0}$	0	0	0	E_p ,

$$g_{0} = 1 + e^{-i\mathbf{k}\cdot\mathbf{R}_{2}} + e^{-i\mathbf{k}\cdot\mathbf{R}_{3}} + e^{-i\mathbf{k}\cdot\mathbf{R}_{4}}$$

$$g_{1} = 1 + e^{-i\mathbf{k}\cdot\mathbf{R}_{2}} - e^{-i\mathbf{k}\cdot\mathbf{R}_{3}} - e^{-i\mathbf{k}\cdot\mathbf{R}_{4}}$$

$$g_{3} = 1 - e^{-i\mathbf{k}\cdot\mathbf{R}_{2}} + e^{-i\mathbf{k}\cdot\mathbf{R}_{3}} - e^{-i\mathbf{k}\cdot\mathbf{R}_{4}}$$

$$g_{4} = 1 - e^{-i\mathbf{k}\cdot\mathbf{R}_{2}} - e^{-i\mathbf{k}\cdot\mathbf{R}_{3}} + e^{-i\mathbf{k}\cdot\mathbf{R}_{4}}$$

Silicon Bandstructure

Si: [Ne] 3s² 3p²

4 e- per silicon atom2 silicon atoms per lattice site total: 8 electrons at each site

Silicon and Germanium Bandstructure

Si: [Ne] $3s^2 3p^2$

Ge: $[Ar]3d^{10}4s^24p^2$

LCAO and Nearly Free Electron Bandstructure

$$\psi_i(r) = \sum_{\alpha} \sum_{\mathbf{R}_n} c_{i,\alpha[\mathbf{R}_n]} \phi_{\alpha}(r - \mathbf{R}_n) \qquad \psi(r) = \sum_{\mathbf{R}} c_{\mathbf{k}} e^{i\mathbf{k}\mathbf{r}}$$