MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem 1

Figure 1: A diagram of a perfectly conducting hollow sphere filled with a perfectly insulating dielectric with a uniform distribution of volume charge (Image by MIT OpenCourseWare).

A perfectly conducting hollow sphere of radius R is filled with a perfectly insulating dielectric ($\sigma=0$) with a uniform distribution of volume charge:

$$
\rho=\rho_{0} \quad 0<r<R
$$

within a medium with permittivity ϵ. The sphere is grounded at $r=R$ so that the scalar electric potential at $r=R$ is zero, $\Phi(r=R)=0$. There is no point charge at $r=0$ so that $E_{r}(r=0)$ must be finite.

A

Question: What is the EQS electric field $\bar{E}(r)$ for $\mathbf{0}<\mathbf{r}<\mathbf{R}$?

Solution:

$$
\begin{aligned}
& \nabla \bullet \bar{E}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} E_{r}\right)=\frac{\rho_{o}}{\epsilon} \Rightarrow \frac{d}{d r}\left(r^{2} E_{r}\right)=\frac{\rho_{o} r^{2}}{\epsilon} \\
& r^{2} E_{r}=\frac{\rho_{0} r^{3}}{3 \epsilon}+C_{1} \Rightarrow E_{r}=\frac{\rho_{o} r}{3 \epsilon}+\frac{C_{1}}{r^{2}} \\
& E_{r}(r=0) \text { is finite } \Rightarrow C_{1}=0 \\
& E_{r}(r)=\frac{\rho_{o} r}{3 \epsilon} \quad 0<r<R
\end{aligned}
$$

B

Question: What is the scalar electric potential $\Phi(r)$ where $\bar{E}(r)=-\nabla \Phi(r)$? Solution:

$$
\begin{aligned}
& E_{r}=-\frac{d \Phi}{d r}=\frac{\rho_{o} r}{3 \epsilon} \Rightarrow \Phi=-\frac{\rho_{o} r^{2}}{6 \epsilon}+C_{2} \\
& \Phi(r=R)=0=-\frac{\rho_{o} R^{2}}{6 \epsilon}+C_{2} \Rightarrow C_{2}=\frac{\rho_{o} R^{2}}{6 \epsilon} \\
& \Phi(r)=-\frac{\rho_{o}}{6 \epsilon}\left(r^{2}-R^{2}\right)
\end{aligned}
$$

C

Question: What is the free surface charge density $\sigma_{s}(r=R)$ on the inside surface of the sphere at $r=R$?
Solution:

$$
\sigma_{s}(r=R)=-\epsilon E_{r}(r=R)=-\frac{\notin \rho_{o} R}{6 \notin}=-\frac{\rho_{0} R}{3}
$$

Problem 2

Figure 2: A diagram of a uniform line charge of height L standing perpendicular to the ground plane (Image by MIT OpenCourseWare).

A uniform line charge λ coulombs/meter of height L stands perpendicularly on a perfectly conducting ground plane of infinite extent in free space with dielectric permittivity ϵ_{0}.

A

Question: Find the electric field at the ground plane surface $\bar{E}\left(r, z=0_{+}\right)$where r is the cylindrical radial coordinate shown above. See integrals in hint below.
Solution:

Figure 3: A diagram of the line charge $+\lambda$ in Figure 2 and its image $-\lambda$ and the resulting net $-z$-directed electric field at $z=0$. (Image by MIT OpenCourseWare).

$$
\begin{aligned}
& d E_{z}=-\frac{\lambda d z^{\prime} z^{\prime}}{2 \pi \epsilon_{o}\left[r^{2}+\left(z^{\prime}\right)^{2}\right]^{3 / 2}} \\
& E_{z}\left(z=0_{+}\right)=-\frac{\lambda}{2 \pi \epsilon_{o}} \int_{z^{\prime}=0}^{L} \frac{z^{\prime} d z^{\prime}}{\left[r^{2}+\left(z^{\prime}\right)^{2}\right]^{3 / 2}} \\
& u=r^{2}+\left(z^{\prime}\right)^{2} \\
& d u=2 z^{\prime} d z^{\prime} \\
& E_{z}\left(r, z=0_{+}\right)=-\frac{\lambda}{2 \pi \epsilon_{o}} \int_{u=r^{2}}^{r^{2}+L^{2}} \frac{d u}{2 u^{3 / 2}}=+\left.\frac{\lambda}{2 \pi \epsilon_{o} u^{1 / 2}}\right|_{u=r^{2}} ^{r^{2}+L^{2}}=+\frac{\lambda}{2 \pi \epsilon_{o}}\left[\frac{1}{\sqrt{r^{2}+L^{2}}}-\frac{1}{r}\right]
\end{aligned}
$$

B

Question: Find the surface charge density on the ground plane surface, $\sigma_{s}\left(r, z=0_{+}\right)$.

Solution:

$$
\sigma_{s}\left(r, z=0_{+}\right)=\epsilon_{o} E_{z}=+\frac{\lambda}{2 \pi}\left[\frac{1}{\sqrt{r^{2}+L^{2}}}-\frac{1}{r}\right]
$$

C

Question: Prove that the total charge $q_{t}\left(z=0_{+}\right)$on the ground plane is $-\lambda L$.

Solution:

$$
\begin{aligned}
q_{t}\left(z=0_{+}\right) & =\int_{r=0}^{\infty} \sigma_{s}\left(r, z=0_{+}\right) 2 \pi r d r \\
& =+\int_{r=0}^{\infty} \frac{2 \pi \lambda}{2 \pi}\left[\frac{r}{\sqrt{r^{2}+L^{2}}}-1\right] d r \\
& =+\left.\lambda\left[\sqrt{r^{2}+L^{2}}-r\right]\right|_{r=0} ^{\infty} \\
& =+\lambda\left[\left.(r-r)\right|_{r \rightarrow \infty}-L\right] \\
& =-\lambda L
\end{aligned}
$$

Hint for parts (a) and (c): one or more of the following indefinite integrals may be useful:
i $\int \frac{x d x}{\left[x^{2}+L^{2}\right]^{1 / 2}}=\sqrt{x^{2}+L^{2}}$
ii $\int \frac{d x}{\left[x^{2}+L^{2}\right]^{1 / 2}}=\ln \left[x+\sqrt{x^{2}+L^{2}}\right]$
iii $\int \frac{d x}{\left[x^{2}+L^{2}\right]^{3 / 2}}=\frac{x}{L^{2}\left[x^{2}+L^{2}\right]^{1 / 2}}$
iv $\int \frac{x d x}{\left[x^{2}+L^{2}\right]^{3 / 2}}=-\frac{1}{\left[x^{2}+L^{2}\right]^{1 / 2}}$

Problem 3

An infinite slab in the y and z directions carries a uniform current density $\bar{J}=J_{0} \overline{i_{z}}$ for $-d<x<d$. The current carrying slab has magnetic permeability of free space μ_{0} and is surrounded by free space for $x>d$ and $x<-d$. There are no surface currents on the $x= \pm d$ surfaces, $\bar{K}(x=d)=\bar{K}(x=-d)=0$ and the magnetic field only depends on the x coordinate.

A

Question: Find the magnetic field $\bar{H}(x)$ everywhere and plot versus x. Solution:

$$
\begin{aligned}
& \nabla \times \bar{H}=\bar{J}=J_{o} \overline{i_{z}} \Rightarrow \frac{\partial H_{y}}{\partial x}-\frac{\partial H_{/ x}}{\partial y}=J_{o} \quad-d \leq x \leq d \\
& H_{y}(x)=J_{o} x+C \quad-d \leq x \leq d \quad, \quad C=0 \text { by symmetry } \\
& H_{y}\left(x=d_{-}\right)=H_{y}\left(x=d_{+}\right)=J_{o} d \quad, \quad H_{y}(x \geq d)=J_{o} d \\
& H_{y}\left(x=-d_{-}\right)=H_{y}\left(x=-d_{+}\right)=-J_{o} d \quad, \quad H_{y}(x \leq-d)=-J_{o} d
\end{aligned}
$$

Figure 4: A diagram of an infinite slab in the y and z directions with width $2 d$ carrying a uniform current density $J_{0} \vec{i}_{z}$. (Image by MIT OpenCourseWare).

Figure 5: A graph showing the magnetic field versus the x coordinate (Image by MIT OpenCourseWare).

B

Question:
A small cylindrical hole of radius a and of infinite extent in the z direction is drilled into the current carrying slab of part (a) and is centered within the slab at the origin. The magnetic permeability of all regions is μ_{0}. Within the hole for $r<a$ the current density is zero, $\bar{J}=0$. What is the total magnetic field \bar{H} in the hole?

Hint 1: Use superposition replacing the cylindrical hole by two oppositely directed currents.

Figure 6: A diagram of an infinite slab in the y and z directions with a cylindrical hole of radius a at the origin with infinite extent in the z direction (Image by MIT OpenCourseWare).

Hint 2: $r \overline{i_{\phi}}=r\left(-\sin \phi \overline{i_{x}}+\cos \phi \overline{\bar{i}_{y}}\right)=\left(-y \overline{i_{x}}+x \overline{i_{y}}\right)$ where $r=\sqrt{x^{2}+y^{2}}$
Solution: Step 1: Put current density $J_{o} \overline{i_{z}}$ in hole with $J_{o} \overline{i_{z}}$ outside hole. Then magnetic field is the same as part (a) with $\bar{J}=0$ outside
Step 2: Put current density $-J_{o} \overline{i_{z}}$ in hole with $\bar{J}=0$ outside hole. Thus net current in hole is zero and net current outside hole is $J_{o} \overline{\bar{i}_{z}}$.

For step 1: $\overline{H_{1}}=J_{o} x \overline{i_{y}}$ in hole
For step 2: $\nabla \times \overline{H_{2}}=-J_{o} \overline{i_{z}}=\overline{i_{z}} \frac{1}{r}\left[\frac{\partial\left(r H_{\phi 2}\right)}{\partial r}-\frac{\partial H_{2}}{\partial \phi}\right]^{0}$

$$
\begin{gathered}
\frac{1}{\gamma} \frac{\partial\left(r H_{\phi 2}\right)}{\partial r}=-J_{o} r \\
r H_{\phi 2}=-\frac{J_{o} r^{2}}{2}+C \\
H_{\phi 2}=-\frac{J_{o} r}{2}+\frac{C}{r} \\
H_{\phi 2}(r=0)=\text { finite } \Rightarrow C=0 \\
H_{\phi 2}=-\frac{J_{o} r}{2} \\
\overline{H_{2}}=-\frac{J_{o} r}{2} \overline{i_{\phi}}=-\frac{J_{o}}{2}\left(-y \overline{i_{x}}+x \overline{i_{y}}\right)
\end{gathered}
$$

$$
\begin{aligned}
\overline{H_{T}} & =\overline{H_{1}}+\overline{H_{2}} \quad(\text { in hole }) \\
& =J_{o} x \overline{i_{y}}-\frac{J_{o}}{2}\left(-y \overline{i_{x}}+x \overline{i_{y}}\right) \\
& =\frac{J_{o}}{2}\left(x \overline{i_{y}}+y \overline{i_{x}}\right)
\end{aligned}
$$

C

Question: Verify that your solution of part (b) satisfies the MQS Ampere's law within the hole where $\bar{J}=0$.

Solution:

$$
\nabla \times \bar{H}=\overline{i_{z}}\left[\frac{\partial H_{y}}{\partial x}-\frac{\partial H_{x}}{\partial y}\right]=\frac{J_{o}}{2}[1-1] \overline{i_{z}}=0
$$

Problem 4

A resistor is formed in the shape of a circular cylindrical half-shell of inner radius b and outer radius a and is composed of two materials with ohmic conductivites and permittivities $\left(\sigma_{1}, \epsilon_{1}\right)$ for $0<\phi<\frac{\pi}{2}$ and $\left(\sigma_{2}, \epsilon_{2}\right)$ for $\frac{\pi}{2}<\phi<\pi$. A DC voltage V_{0} is applied to the electrode at $\phi=0$ while the electrode at $\phi=\pi$ is grounded. The EQS scalar potential is thus imposed as $\Phi(\phi=0)=V_{0}, \Phi(\phi=\pi)=0$. The cylindrical system has a depth d.

A

Question: The solution for the EQS scalar potential is each conducting material can be written in the form

$$
\begin{array}{ll}
\Phi_{1}=A_{1} \phi+B_{1} & 0<\phi<\frac{\pi}{2} \\
\Phi_{2}=A_{2} \phi+B_{2} & \frac{\pi}{2}<\phi<\pi
\end{array}
$$

In the dc steady state what are the boundary conditions that allow calculation of A_{1}, A_{2}, B_{1}, and B_{2} ? Find A_{1}, A_{2}, B_{1}, and B_{2}.
Solution: Boundary Conditions

Figure 7: A diagram of a semi-circular shaped resistor formed from two different materials (Image by MIT OpenCourseWare).

$$
\begin{array}{rlrl}
\Phi_{1}(\phi=0) & =V_{o}=B_{1} \\
\Phi_{2}(\phi=\pi) & =0=A_{2} \pi+B_{2} & \\
\Phi_{1}\left(\phi=\frac{\pi}{2}\right) & =\Phi_{2}\left(\phi=\frac{\pi}{2}\right) \Rightarrow A_{1} \frac{\pi}{2}+B_{1}=A_{2} \frac{\pi}{2}+B_{2} \\
\sigma_{1} E_{\phi 1}\left(\phi=\frac{\pi}{2}\right) & =\sigma_{2} E_{\phi 2}\left(\phi=\frac{\pi}{2}\right), & E_{\phi 1} & =-\frac{1}{r} \frac{\partial \Phi_{1}}{\partial \phi}=-\frac{A_{1}}{r} \\
\sigma_{1} A_{1} & =\sigma_{2} A_{2} & E_{\phi 2}=-\frac{1}{r} \frac{\partial \Phi_{2}}{\partial \phi}=-\frac{A_{2}}{r}
\end{array}
$$

$$
\begin{aligned}
& B_{1}=V_{0} \\
& B_{2}=-A_{2} \pi \\
& A_{1} \frac{\pi}{2}+B_{1}=A_{2} \frac{\pi}{2}-A_{2} \pi=-A_{2} \frac{\pi}{2} \Rightarrow A_{1} \frac{\pi}{2}+V_{0}=-A_{2} \frac{\pi}{2} \\
& \sigma_{1} A_{1}=\sigma_{2} A_{2} \Rightarrow A_{2}=\frac{\sigma_{1}}{\sigma_{2}} A_{1} \\
& \frac{\pi}{2}\left[A_{1}+A_{2}\right]=-V_{0} \\
& A_{1}\left[1+\frac{\sigma_{1}}{\sigma_{2}}\right]=-\frac{2 V_{0}}{\pi} \\
& A_{1}=-\frac{2 \sigma_{2} V_{0}}{\pi\left[\sigma_{1}+\sigma_{2}\right]} \\
& A_{2}=-\frac{2 \sigma_{1} V_{0}}{\pi\left[\sigma_{1}+\sigma_{2}\right]} \\
& B_{2}=\frac{2 \sigma_{1} V_{0}}{\left[\sigma_{1}+\sigma_{2}\right]}, B_{1}=V_{0}
\end{aligned}
$$

B

Question: What is the electric field in each region of the resistor?

Solution:

$$
\begin{aligned}
& \overline{E_{1}}=-\frac{A_{1}}{r} \overline{i_{\phi}}=\frac{2 \sigma_{2} V_{0}}{r \pi\left(\sigma_{1}+\sigma_{2}\right)} \overline{i_{\phi}} \\
& \overline{E_{2}}=-\frac{A_{2}}{r} \overline{i_{\phi}}=\frac{2 \sigma_{1} V_{0}}{r \pi\left(\sigma_{1}+\sigma_{2}\right)} \overline{i_{\phi}}
\end{aligned}
$$

C
Question: What are the free surface charge densities on the interfaces at $\phi=0, \phi=\frac{\pi}{2}$, and $\phi=$ π ?

Solution:

$$
\begin{aligned}
\sigma_{s}(r, \phi=0) & =\epsilon_{1} E_{\phi 1}(\phi=0)=\frac{\epsilon_{1} V_{0}}{r} \frac{2 \sigma_{2}}{\pi\left(\sigma_{1}+\sigma_{2}\right)} \\
\sigma_{s}(r, \phi=\pi) & =-\epsilon_{2} E_{\phi 2}(\phi=\pi)=-\frac{\epsilon_{2} V_{0}}{r} \frac{2 \sigma_{1}}{\pi\left(\sigma_{1}+\sigma_{2}\right)} \\
\sigma_{s}\left(r, \phi=\frac{\pi}{2}\right) & =\epsilon_{2} E_{\phi 2}\left(\phi=\frac{\pi}{2}+\right)-\epsilon_{1} E_{\phi 1}\left(\phi=\frac{\pi}{2}-\right) \\
& =-\frac{\left[\epsilon_{2} A_{2}-\epsilon_{1} A_{1}\right]}{r} \\
& =\frac{-2 V_{0}}{r \pi\left(\sigma_{1}+\sigma_{2}\right)}\left[-\epsilon_{2} \sigma_{1}+\epsilon_{1} \sigma_{2}\right] \\
& =\frac{2 V_{0}}{r \pi\left(\sigma_{1}+\sigma_{2}\right)}\left[\epsilon_{2} \sigma_{1}-\epsilon_{1} \sigma_{2}\right]
\end{aligned}
$$

D

Question: What is the DC terminal current I that flows from the battery? Solution:

$$
\begin{aligned}
I=\int_{r=b}^{a} J_{\phi} d d r=\int_{r=b}^{a} \sigma_{1} E_{1 \phi} d d r & =\int_{r=b}^{a} \frac{\sigma_{1} 2 \sigma_{2} V_{0} d}{\pi r\left(\sigma_{1}+\sigma_{2}\right)} d r \\
& =\frac{2 \sigma_{1} \sigma_{2} d V_{0}}{\pi\left(\sigma_{1}+\sigma_{2}\right)} \ln \frac{a}{b}
\end{aligned}
$$

E

Question: What is the resistance between the electrodes at $\phi=0$ and $\phi=\pi$? Solution:

$$
R=\frac{V_{0}}{I}=\frac{\pi\left(\sigma_{1}+\sigma_{2}\right)}{2 \sigma_{1} \sigma_{2} d \ln \frac{a}{b}}
$$

