MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

$$
\text { Quiz } 1 \text { - Solutions }
$$

Prof. Markus Zahn MIT OpenCourseWare

Problem 1

A
Question: Find a suitable image current to find the magnetic field for $z>0$. Does the direction of the image current surprise you?
Solution:

Figure 1: Figure showing image line. (Image by MIT OpenCourseWare).

B

Question: What is the magnetic field magnitude and direction for $z>0$?
Solution:

$$
H_{\phi}=\frac{I}{2 \pi r} \quad \text { for } z>0
$$

C
Question: What is the surface current magnitude and direction on the $z=0$ surface of the conducting plane?

Solution:

$$
\begin{aligned}
& \bar{n} \times \bar{H}\left(z=0_{+}\right)=\bar{i}_{z} \times H_{\phi}\left(z=0_{+}\right) \bar{i}_{\phi}=-H_{\phi} \bar{i}_{r}=\bar{K} \\
& K_{r}=-H_{\phi}\left(z=0_{+}\right)=-\frac{I}{2 \pi r}
\end{aligned}
$$

Problem 2

A
Question: What is the electric field for $a \leq r \leq b$?
Solution:

$$
\begin{aligned}
& \nabla \cdot \bar{J}=\nabla \cdot[\sigma(r) \bar{E}]=0 \quad\left(\bar{E}=E_{r}(r) \bar{i}_{r}\right) \\
& \nabla \cdot[\sigma(r) \bar{E}]=\frac{1}{r} \frac{\partial}{\partial r}\left(r \sigma(r) E_{r}(r)\right)=0 \\
& \sigma(r)=\frac{\sigma_{0} r}{a} \\
& r \sigma(r) E_{r}(r)=C(\text { Constant })=\frac{r^{2} \sigma_{0}}{a} E_{r}(r) \\
& E_{r}(r)=\frac{C a}{\sigma_{0} r^{2}} \\
& v=\int_{r=a}^{b} E_{r}(r) d r=\int_{r=a}^{b} \frac{C a}{\sigma_{0} r^{2}} d r=-\left.\frac{C a}{\sigma_{0} r}\right|_{r=a} ^{b}=-\frac{C a}{\sigma_{0}}\left(\frac{1}{b}-\frac{1}{a}\right) \\
& C=\frac{\sigma_{0} v}{1-\frac{a}{b}} \Rightarrow E_{r}(r)=\frac{\frac{\sigma_{0} v a}{\mathscr{\sigma}_{0} r^{2}\left(1-\frac{a}{b}\right)}=\frac{v a}{r^{2}\left(1-\frac{a}{b}\right)}}{}
\end{aligned}
$$

B
Question: What are the surface charge densities at $r=a$ and $r=b$? Solution:

$$
\begin{aligned}
& \sigma_{s}(r=a)=\varepsilon E_{r}(r=a)=\frac{\varepsilon v a}{a^{2}\left(1-\frac{a}{b}\right)}=\frac{\varepsilon v}{a\left(1-\frac{a}{b}\right)} \\
& \sigma_{s}(r=b)=-\varepsilon E_{r}(r=b)=-\frac{\varepsilon v a}{b^{2}\left(1-\frac{a}{b}\right)}
\end{aligned}
$$

C
Question: What is the volume charge density for $a \leq r \leq b$?

Solution:

$$
\begin{aligned}
\rho=\varepsilon \nabla \cdot \bar{E}=\frac{\varepsilon}{r} \frac{\partial}{\partial r}\left(r E_{r}\right) & =\frac{\varepsilon}{r} \frac{\partial}{\partial r}\left(\frac{v a}{r\left(1-\frac{a}{b}\right)}\right) \\
& =-\frac{\varepsilon}{r^{3}} \frac{v a}{\left(1-\frac{a}{b}\right)}
\end{aligned}
$$

D

Question: What is the total charge in the system?

Solution:

$$
\begin{aligned}
& L \int_{a}^{b} \rho 2 \pi r d r=-\frac{2 \pi \varepsilon v a L}{\left(1-\frac{a}{b}\right)} \int_{a}^{b} \frac{1}{r^{2}} d r=\left.\frac{2 \pi \varepsilon v a L}{\left(1-\frac{a}{b}\right)} \frac{1}{r}\right|_{a} ^{b} \\
& =\frac{2 \pi \varepsilon v a L}{\left(1-\frac{a}{b}\right)}\left(\frac{1}{b}-\frac{1}{a}\right) \\
& =-2 \pi \varepsilon v L \\
& Q_{T}=\left[2 \pi a \sigma_{s}(r=a)+2 \pi b \sigma_{s}(r=b)+\int_{a}^{b} \rho 2 \pi r d r\right] L \\
& =\frac{2 \pi a \varepsilon v}{\left(1-\frac{a}{b}\right)}\left[\frac{1}{a}-\frac{1}{b}+\frac{1}{b}-\frac{1}{a}\right] L \\
& =0
\end{aligned}
$$

E
Question: What is the resistance between the cylindrical electrodes?

Solution:

$$
\left.\begin{array}{rl}
i=\sigma(r) E_{r}(r) 2 \pi r L & =\frac{\sigma_{0} \not \gamma^{\prime}}{\not x} 2 \pi \gamma L \frac{v \not ̆}{\not p^{2}\left(1-\frac{a}{b}\right)} \\
& =\frac{\sigma_{0} 2 \pi L v}{\left(1-\frac{a}{b}\right)}
\end{array}\right\} \begin{aligned}
& R=\frac{v}{i}=\frac{\left(1-\frac{a}{b}\right)}{\sigma_{0} 2 \pi L}
\end{aligned}
$$

Problem 3

A

Question: There is no volume charge for $0<r<R$ and $r>R$ and $\Phi(r=\infty, \theta)=0$. Laplace's equation for the scalar electric potential in spherical coordinates is:

$$
\nabla^{2} \Phi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{d \Phi}{d r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Phi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Phi}{\partial \phi^{2}}=0
$$

Guess a solution to Laplace's equation of the form $\Phi(r, \theta)=A r^{p} \cos \theta$ and find all allowed values of p.
Solution:

$$
\begin{aligned}
& \nabla^{2} \Phi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Phi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Phi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Phi}{\partial \phi^{2}}=0 \\
& \begin{aligned}
\Phi(r, \theta) & =A r^{p} \cos \theta \\
\nabla^{2} \Phi & =\frac{1}{y^{2}} \frac{\partial}{\partial r}\left(r^{2} A p r^{p-1} \cos \theta\right)+\frac{1}{z^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta\left(-A r^{p} \sin \theta\right)\right)=0 \\
0 & =A p \cos \theta \frac{\partial}{\partial r}\left(r^{p+1}\right)-\frac{1}{\sin \theta} A r^{p} \frac{\partial}{\partial \theta}\left(\sin ^{2} \theta\right) \\
& =A r^{p} \cos \theta(p(p+1))-\frac{A r^{p}}{\sin \theta} 2 \sin \theta \cos \theta \\
& =A r^{p} \cos \theta[p(p+1)-2]=0 \\
p^{2}+p-2 & =(p+2)(p-1)=0 \Rightarrow p=1, p=-2 \\
\Phi_{1}(r, \theta) & =A r \cos \theta, \Phi_{2}(r, \theta)=\frac{A \cos \theta}{r^{2}}
\end{aligned}
\end{aligned}
$$

B

Question: Which of your scalar electric potential solutions in part (a) are finite at $r=0$? Solution:

$$
\Phi_{1}(r, \theta)=A r \cos \theta
$$

C

Question: Which of your solutions in part (a) have zero potential at $r=\infty$?

Solution:

$$
\Phi_{2}(r, \theta)=\frac{A \cos \theta}{r^{2}}
$$

D

Question: Using the results of parts (b) and (c) find the scalar electric potential solutions for $\overline{0 \leq r \leq R}$ and $r \geq R$ that satisfy the boundary condition $\Phi(r=R, \theta)=V_{0} \cos \theta$.

Solution:

$$
\begin{aligned}
& \Phi(r, \theta)= \begin{cases}A r \cos \theta & 0 \leq r \leq R \\
\frac{B}{r^{2}} \cos \theta & r \geq R\end{cases} \\
& \Phi(r=R, \theta)=V_{0} \cos \theta=A R \cos \theta=\frac{B}{R^{2}} \cos \theta \\
& A=\frac{V_{0}}{R}, B=V_{0} R^{2} \\
& \Phi(r, \theta)= \begin{cases}\frac{V_{0} r}{R} \cos \theta & 0 \leq r \leq R \\
\frac{V_{0} R^{2}}{r^{2}} \cos \theta & r \geq R\end{cases}
\end{aligned}
$$

E

Question: Find the electric field in the regions $0 \leq r<R$ and $r>R$.
Hint:

$$
\bar{E}=-\nabla \Phi=-\left[\frac{\partial \Phi}{\partial r} \overline{i_{r}}+\frac{1}{r} \frac{\partial \Phi}{\partial \theta} \overline{i_{\theta}}\right]
$$

Solution:

$$
\bar{E}=-\left[\frac{\partial \Phi}{\partial r} \bar{i}_{r}+\frac{1}{r} \frac{\partial \Phi}{\partial \theta} \overline{i_{\theta}}\right]
$$

$0 \leq r<R$

$$
\bar{E}=-\frac{V_{0}}{R}\left[\cos \theta \overline{i_{r}}-\sin \theta \overline{i_{\theta}}\right]
$$

$r>R$

$$
\begin{aligned}
\bar{E} & =-V_{0} R^{2}\left[-\frac{2}{r^{3}} \cos \theta \overline{i_{r}}-\frac{\sin \theta}{r^{3}} \overline{i_{\theta}}\right] \\
& =\frac{V_{0} R^{2}}{r^{3}}\left(2 \cos \theta \overline{i_{r}}+\sin \theta \overline{i_{\theta}}\right)
\end{aligned}
$$

F
Question: What is the surface charge distribution on the $r=R$ interface?

Solution:

$$
\begin{aligned}
\sigma_{s}(r=R, \theta) & =\varepsilon_{0} E_{r}\left(r=R_{+}, \theta\right)-\varepsilon E_{r}\left(r=R_{-}, \theta\right) \\
& =\frac{\varepsilon_{0} V_{0}}{R} 2 \cos \theta+\frac{\varepsilon V_{0}}{R} \cos \theta \\
& =\frac{V_{0}}{R}\left(\varepsilon+2 \varepsilon_{0}\right) \cos \theta
\end{aligned}
$$

