MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Problem 1

Figure 1: A diagram of a sheet of surface charge at $y=0$ between two grounded perfect conductors at $y=-b$ and $y=a$ (Image by MIT OpenCourseWare).

A sheet of surface charge with surface charge distribution $\sigma_{s}(x, y=0)=\sigma_{0} \sin k x$ is placed at $y=0$, parallel and between two parallel grounded perfect conductors at zero potential at $y=-b$ and $y=a$. The regions above and below the potential sheet have dielectric permittivities of ϵ_{2} and ϵ_{1}. Neglect fringing field effects.

A

Question: What are the electric potential solutions in the regions $0 \leq y \leq a$ and $-b \leq y \leq 0$? Solution:

$$
\begin{aligned}
& \Phi(x, y)=\left\{\begin{array}{cc}
A \sinh k(y-a) \sin k x & 0<y<a \\
B \sinh k(y+b) \sin k x & -b<y<0
\end{array}\right. \\
& \Phi\left(x, y=0_{-}\right)=\Phi\left(x, y=0_{+}\right) \Rightarrow-A \sinh k a=B \sinh k b \\
& E_{y}\left(x, y=0_{+}\right)=-\left.\frac{\partial \Phi}{\partial y}\right|_{y=0+}=-\left.A k \cosh k(y-a) \sin k x\right|_{y=0_{+}}=-A k \cosh k a \sin k x \\
& E_{y}\left(x, y=0_{-}\right)=-\left.\frac{\partial \Phi}{\partial y}\right|_{y=0-}=-\left.B k \cosh k(y+b) \sin k x\right|_{y=0_{-}}=-B k \cosh k b \sin k x
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{s}(x, y=0)=\sigma_{0} \sin k x=\epsilon_{2} E_{y}\left(x, y=0_{+}\right)-\epsilon_{1} E_{y}\left(x, y=0_{-}\right)=-\epsilon_{2} A k \cosh k a \sin k x+\epsilon_{1} B k \cosh k b \sin k x \\
& \begin{array}{c}
\sigma_{0}=-\epsilon_{2} A k \cosh k a+\epsilon_{1} B k \cosh k b \\
B=-\frac{A \sinh k a}{\sinh k b} \Rightarrow-\epsilon_{2} A k \cosh k a-\epsilon_{1} k \frac{A \sinh k a \cosh k b}{\sinh k b}=\sigma_{0} \\
\Rightarrow-A k\left[\epsilon_{2} \cosh k a+\frac{\epsilon_{1} \sinh k a \cosh k b}{\sinh k b}\right]=\sigma_{0}
\end{array} \\
& \begin{array}{r}
A=\frac{-\sigma_{0} \sinh k b}{k\left[\epsilon_{2} \cosh k a \sinh k b+\epsilon_{1} \sinh k a \cosh k b\right]} \\
B=\frac{-A \sinh k a}{\sinh k b}=\frac{\sigma_{0} \sinh k a}{k\left[\epsilon_{2} \cosh k a \sinh k b+\epsilon_{1} \sinh k a \cosh k b\right]} \\
\Phi(x, y)=\left\{\begin{array}{c}
A \sinh k(y-a) \sin k x=\frac{-\sigma_{0} \sinh k b \sinh k(y-a) \sin k x}{k\left[\epsilon_{2} \cosh k a \sinh k b+\epsilon_{1} \sinh k a \cosh k b\right]} \quad 0<y<a \\
B \sinh k(y+b) \sin k x=\frac{\sigma_{0} \sinh k a \sinh k(y+b) \sin k x}{k\left[\epsilon_{2} \cosh k a \sinh k b+\epsilon_{1} \sinh k a \cosh k b\right]}
\end{array} \quad-b<y<0\right.
\end{array}
\end{aligned}
$$

B

Question: What are the electric field distributions in the regions $0<y<a$ and $-b<y<0$? Solution:

$$
\begin{aligned}
0<y<a & \bar{E}=-\nabla \Phi=-\left[\frac{\partial \Phi}{\partial x} \overline{i_{x}}+\frac{\partial \Phi}{\partial y} \overline{i_{y}}\right]=-A k\left[\cosh k x \sinh k(y-a) \bar{i}_{x}+\sin k x \cosh k(y-a) \bar{i}_{y}\right] \\
-b<y<0 & \bar{E}=-B k\left[\cos k x \sinh k(y+b) \overline{i_{x}}+\sin k x \cosh k(y+b) \overline{i_{y}}\right]
\end{aligned}
$$

C
Question: What are the free surface charge distributions at $y=-b$ and $y=a$?

Solution:

$$
\begin{aligned}
\sigma_{s}(x, y=-b) & =\epsilon_{2} E_{y}(x, y=-b) \\
& =-\epsilon_{2} B k \sin k x \\
& =\frac{-\sigma_{0} \epsilon_{2} \sinh k a \sin k x}{\left[\epsilon_{2} \cosh k a \sinh k b+\epsilon_{1} \sinh k a \cosh k b\right]} \\
\sigma_{s}(x, y=a) & =-\epsilon_{1} E_{y}(x, y=a) \\
& =\epsilon_{1} A k \sin k x \\
& =\frac{-\epsilon_{1} \sigma_{0} \sinh k b \sin k x}{\left[\epsilon_{2} \cosh k a \sinh k b+\epsilon_{1} \sinh k a \cosh k b\right]}
\end{aligned}
$$

D

Question: What is the potential distribution at $y=0$?

Solution:

$$
\Phi(x, y=0)=\frac{\sigma_{0} \sinh k a \sinh k b \sin k x}{k\left[\epsilon_{2} \cosh k a \sinh k b+\epsilon_{1} \sinh k a \cosh k b\right]}
$$

Problem 2

Figure 2: A diagram of a surface current sheet placed on the surface of a sphere of radius R (Image by MIT OpenCourseWare).

A surface current sheet $\bar{K}=K_{0} \sin \theta \overline{i_{\phi}}$ is placed on the surface of a sphere of radius R. The inside of the sphere $(r<R)$ has magnetic permeability μ and the outside region $(r>R)$ is free space with magnetic permeability μ_{0}. The magnetic field at $r=\infty$ is zero.

A
Question: What are the boundary conditions on the magnetic field at $r=0$ and $r=R$? Solution:

$$
\begin{aligned}
& \bar{H}(r=0)=\text { finite }, \quad H_{\theta}\left(r=R_{+}, \theta\right)-H_{\theta}\left(r=R_{-}, \theta\right)=K_{0} \sin \theta \\
& \mu H_{r}\left(r=R_{-}, \theta\right)=\mu_{0} H_{r}\left(r=R_{+}, \theta\right)
\end{aligned}
$$

B

Question: What are the general form of the solutions for the magnetic scalar potential inside and outside the sphere?
Solution:

$$
\begin{aligned}
& \nabla \times H=0 \Rightarrow \bar{H}=-\nabla \chi \\
& \chi(r, \theta)=\left\{\begin{array}{cc}
A r \cos \theta & 0<r<R \\
\frac{C}{r^{2}} \cos \theta & R<r<\infty
\end{array}\right.
\end{aligned}
$$

C
Question: Use the boundary conditions of part (a) and solve for the magnetic scalar potential and the magnetic field \bar{H} inside and outside the sphere.
Solution:

$$
\left.\begin{array}{l}
H_{\theta}=-\frac{1}{r} \frac{\partial \chi}{\partial \theta}=\left\{\begin{array}{cc}
A \sin \theta & 0<r<R \\
\frac{C}{r^{3}} \sin \theta & R<r<\infty
\end{array}\right. \\
H_{r}=-\frac{\partial \chi}{\partial r}=\left\{\begin{array}{cc}
-A \cos \theta & 0<r<R \\
\frac{2 C}{r^{3}} \cos \theta & R<r<\infty
\end{array}\right. \\
H_{\theta}\left(r=R_{+}, \theta\right)-H_{\theta}\left(r=R_{-}, \theta\right)=K_{0} \sin \theta \Rightarrow \frac{C}{R^{3}}-A=K_{0}
\end{array}\right\} \begin{aligned}
& \mu H_{r}\left(r=R_{-}, \theta\right)-\mu_{0} H_{r}\left(r=R_{+}, \theta\right) \Rightarrow-\mu A=\frac{\mu_{0} 2 C}{R^{3}} \\
& A=-\frac{\mu_{0}}{\mu} \frac{2 C}{R^{3}} \Rightarrow \frac{C}{R^{3}}\left(1+\frac{2 \mu_{0}}{\mu}\right)=K_{0} \\
& 1+\frac{K_{0} R^{3}}{\mu}, A=-\frac{2 \mu_{0}}{\mu} \frac{C}{R^{3}}=-\frac{2 \mu_{0}}{\mu} \frac{K_{0}}{1+\frac{2 \mu_{0}}{\mu}} \\
& \chi(r, \theta)= \begin{cases}-\frac{2 \mu_{0}}{\mu} \frac{K_{0}}{1+\frac{2 \mu_{0}}{\mu}} r \cos \theta & 0<r<R \\
\frac{K_{0} R^{3}}{1+\frac{2 \mu_{0}}{\mu}} \frac{\cos \theta}{r^{2}} & R<r<\infty\end{cases} \\
& \bar{H}(r, \theta)= \begin{cases}-A\left(\cos \theta \overline{i_{r}}-\sin \theta \overline{i_{\theta}}\right)=-A \overline{i_{z}}=\frac{2 \mu_{0}}{\mu} \frac{K_{0}}{1+\frac{2 \mu_{0}}{\mu}} \overline{i_{z}} & 0<r<R \\
\frac{K_{0}}{1+\frac{2 \mu_{0}}{\mu} \frac{R^{3}}{r^{3}}\left(2 \cos \theta \overline{i_{r}}+\sin \theta \overline{i_{\theta}}\right)} & R<r<\infty\end{cases}
\end{aligned}
$$

D

Question: The scalar magnetic potential for a point magnetic dipole of moment $m \overline{i_{z}}$ at the origin is $\bar{H}=-\nabla \chi, \chi=\frac{m \cos \theta}{4 \pi r^{2}}$

What is the effective magnetic moment of the sphere and the surface current sheet for $r>R$?
Solution:

$$
\frac{m}{4 \pi}=\frac{K_{0} R^{3}}{1+\frac{2 \mu_{0}}{\mu}} \Rightarrow m=\frac{4 \pi K_{0} R^{3}}{1+\frac{2 \mu_{0}}{\mu}}
$$

E
Question: What is the equation for the magnetic field line that passes through the point $\left.\overline{\left(r=R_{0}, \theta\right.}=\frac{\pi}{2}\right)$ where $R_{0}>R$.
Solution:

$$
\begin{aligned}
& \frac{d r}{r d \theta}=\frac{H_{r}}{H_{\theta}}=\frac{2 \cos \theta}{\sin \theta} \quad R<r<\infty \\
& \frac{d r}{r}=\frac{2 \cos \theta d \theta}{\sin \theta} \\
& \int \frac{d r}{r}=\int \frac{2 \cos \theta}{\sin \theta} d \theta \\
& \ln r=\int \frac{2 \cos \theta}{\sin \theta} d \theta \\
& \text { Let } u=\sin \theta, d u=\cos \theta d \theta \\
& \ln r=\int \frac{2 d u}{u}=2 \ln u+C_{1}=\ln u^{2}+C_{1}=\ln \left(\sin ^{2} \theta\right)+C_{1} \\
& \ln \frac{r}{\sin ^{2} \theta}=C_{1} \Rightarrow \frac{r}{\sin ^{2} \theta}=e^{C_{1}}=C_{2} \\
& r=R_{0}, \theta=\frac{\pi}{2} \Rightarrow C_{2}=R_{0} \Rightarrow r=R_{0} \sin ^{2} \theta
\end{aligned}
$$

F

Question: For the field line in (e), if $R_{0}=2 R$, at what angles of θ does the field line contact the sphere?
Solution:

$$
\begin{aligned}
& R_{0}=2 R \Rightarrow \frac{R}{R_{0}}=\frac{1}{2}=\sin ^{2} \theta \\
& \sin \theta=\frac{1}{\sqrt{2}} \Rightarrow \theta=\frac{\pi}{4}, \frac{3 \pi}{4}\left(45^{\circ}, 135^{\circ}\right)
\end{aligned}
$$

Problem 3

A reluctance motor is made by placing a high permeability material, which is free to rotate, in the air gap of a magnetic circuit excited by a current $i(t)$.

Figure 3: A diagram of a reluctance motor (Image by MIT OpenCourseWare).
The inductance of the magnetic circuit varies with rotor angle θ as

$$
L(\theta)=L_{0}+L_{1} \cos 2 \theta, L_{0}>0,0<L_{1}<L_{0}
$$

where the maximum inductance $L_{0}+L_{1}$ occurs when $\theta=0$ or $\theta=\pi$ and the minimum inductance $L_{0}-L_{1}$ occurs when $\theta= \pm \frac{\pi}{2}$.

A

Question: What is the magnetic torque, $T_{m a g}$, on the rotor as a funcion of the angle θ and current $i(t)$?
Solution:

$$
T_{m a g}=\frac{1}{2} i^{2} \frac{d L(\theta)}{d \theta}=\frac{1}{2} i^{2}\left(-L_{1} 2 \sin 2 \theta\right)=-L_{1} i^{2} \sin 2 \theta
$$

B

Question: With $i(t)$ a DC current I, a constant positive mechanical stress $T_{m e c h}>0$ is applied. What is the largest value of $T_{m e c h}=T_{\max }$ for which the rotor can be in static equilibrium? Solution:

$$
T_{\text {mech }}+T_{\text {mag }}=T_{\text {mech }}-L_{1} i^{2} \sin 2 \theta=0
$$

maximum of $\sin 2 \theta=1$
$T_{\text {mech }}=T_{\max }=L_{1} I^{2}$

C

Question: If $T_{m e c h}=\frac{1}{2} T_{m a x}$, plot the total torque $T_{m a g}+T_{m e c h}$. Use a graphical method to determine the equilibrium values of θ and label which are stable and which are unstable.
Solution:

$$
\begin{aligned}
& T_{T}=T_{m e c h}+T_{m a g}=L_{1} I^{2}\left(\frac{1}{2}-\sin 2 \theta\right)=0 \\
& \sin 2 \theta=\frac{1}{2} \Rightarrow 2 \theta=\frac{\pi}{6}, \frac{5 \pi}{6}\left(30^{\circ}, 150^{\circ}\right) \\
& \quad \theta=\frac{\pi}{12}, \frac{5 \pi}{12}, \frac{13 \pi}{12}, \frac{17 \pi}{12}\left(15^{\circ}, 75^{\circ}, 195^{\circ}, 255^{\circ}\right)
\end{aligned}
$$

Stable if $\left.\frac{\partial T_{T}}{\partial \theta}\right|_{T_{T}=0}<0 \quad \theta=15^{\circ}, 195^{\circ}$ Stable
Unstable if $\left.\frac{\partial T_{T}}{\partial \theta}\right|_{T_{T}=0}>0 \quad \theta=75^{\circ}, 255^{\circ}$ Unstable

D

Question: If the rotor has moment of inertia J and is slightly perturbed from a stable equilibrium position $\theta_{e q}$ at $t=0$ by an angle position $\theta^{\prime}(t)$, what is the general frequency of oscillation? What is the oscillation frequency for $\theta_{e q}$ found for stable equilibrium in part (c)? Solution:

$$
\begin{aligned}
& \quad \theta=\theta_{e q}+\theta^{\prime}(t) \\
& \quad T_{T}(\theta)=T_{m e c h}+T_{m a g}\left(\theta=\theta_{e q}\right)=0 \\
& T_{T}\left(\theta=\theta_{e q}+\theta^{\prime}(t)\right)=T_{T}\left(\theta \geq \theta_{e q}\right)+\left.\frac{d T_{T}}{d \theta}\right|_{\theta=\theta_{e q}} ^{\left(\theta^{\prime}(t)\right)} \\
& \frac{J d^{2} \theta}{d t^{2}}=\frac{J d^{2} \theta^{\prime}}{d t^{2}}=\left.\frac{d T_{T}}{d \theta}\right|_{\theta=\theta_{e q}} \theta^{\prime} \\
& \quad \frac{d^{2} \theta^{\prime}}{d t^{2}}-\left.\frac{1}{J} \frac{d T_{T}}{d \theta}\right|_{\theta=\theta_{e q}} \theta^{\prime}=0 \\
& \quad \text { Let } \omega_{0}^{2}=-\left.\frac{1}{J} \frac{d T_{T}}{d \theta}\right|_{\theta_{e q}} \Rightarrow \frac{d^{2} \theta^{\prime}}{d t^{2}}+\omega_{0}^{2} \theta^{\prime}=0 \\
& \quad \omega_{0}^{2}>0 \text { if }\left.\frac{d T_{T}}{d \theta}\right|_{\theta_{e q}}<0 \\
& \% \text { Mathematica code for generating the graph } \\
& \text { In[1] }=\mathrm{f}[\text { angle_] }=.5-\text { Sin[2*angle*2*Pi/360] } \\
& \text { Out[1] }=0.5-\text { Sin[angle*Pi/90] } \\
& \text { In [2] }=\text { Plot[f[angle], \{angle,0,360\},AxesLabel -> \{"Angle Theta in Degrees", "Total Torque/(L1*I~2) "\}] } \\
& \text { Out [2] }=\% \text { See Figure 4 }
\end{aligned}
$$

Figure 4: A graph plotting Total Torque versus Angle Theta in Degrees (Image by MIT OpenCourseWare).

$$
\theta^{\prime}(t)=A_{1} \sin \omega_{0} t+A_{2} \cos \omega_{0} t
$$

Perturbations are bounded if ω_{0} real $\left(\omega_{0}^{2}>0\right)$
This requires $\left.\frac{d T_{T}}{d \theta}\right|_{\theta_{e q}}<0$

$$
\left.\frac{d T_{T}}{d \theta}\right|_{\theta_{e q}}=-2 L_{1} I^{2} \cos 2 \theta_{e q} \Rightarrow \cos 2 \theta_{e q}>0 \text { for stability }
$$

$\theta_{e q}$	$\cos 2 \theta_{e q}$	Stability
15°	$\sqrt{3} / 2$	Stable

$75^{\circ} \quad-\sqrt{3} / 2 \quad$ Unstable
$195^{\circ} \quad \sqrt{3} / 2 \quad$ Stable
$255^{\circ}-\sqrt{3} / 2 \quad$ Unstable

E

Question: If the initial conditions of the perturbation are $\left.\frac{d \theta^{\prime}}{d t}\right|_{t=0}$ and $\theta^{\prime}(t=0)=\Delta \theta$ what is $\theta^{\prime}(t)$ for $t>0$. Neglect any damping.

Solution:

$$
\begin{aligned}
& \left.\frac{d \theta^{\prime}}{d t}\right|_{t=0}=\left.\omega_{0}\left(A_{1} \cos \omega_{0} t-A_{2} \sin \omega_{0} t\right)\right|_{t=0}=A_{1} \omega_{0}=0 \\
& A_{1}=0 \\
& \theta(t=0)=\Delta \theta=A_{2} \Rightarrow \theta(t)=\Delta \theta \cos \omega_{0} t \\
& \omega_{0}=\left[\frac{1}{J} 2 L_{1} I^{2}\right]^{1 / 2}
\end{aligned}
$$

F

Question: If $i(t)$ is a DC current I and a motor drives the rotor angle θ at constant angular speed Ω so that $\theta=\Omega t$, what is the voltage $v(t)$ across the coil?
Solution:

$$
\begin{aligned}
& v(t)=\frac{d \lambda}{d t}=\frac{d[L(\theta) I]}{d t}=I \frac{d L(\theta)}{d t}=I \frac{d L(\theta)}{d \theta} \frac{d \theta}{d t} \\
& v(t)=-2 L_{1} I \Omega \sin 2 \Omega t
\end{aligned}
$$

Problem 4

Figure 5: A diagram of a parallel plate capacitor with two dielectrics in series (Image by MIT OpenCourseWare).

A parallel plate capacitor with electrodes of area A has its upper electrode in a free space region in series with a solid dielectric of thickness s and dielectric permittivity ϵ. The $x=s$ interface has no free surface charge.

A

Question: What are the electric fields E_{1} and E_{2} in the dielectric and free space regions? Solution:

$$
\begin{aligned}
& V_{0}=E_{1} s+E_{2}(x-s) \\
& \epsilon E_{1}=\epsilon_{0} E_{2} \Rightarrow E_{2}=\frac{\epsilon}{\epsilon_{0}} E_{1} \\
& E_{1}\left[s+\frac{\epsilon}{\epsilon_{0}}(x-s)\right]=V_{0} \\
& E_{1}=\frac{\epsilon_{0} V_{0}}{\left[\epsilon_{0} s+\epsilon(x-s)\right]} \\
& E_{2}=\frac{\epsilon V_{0}}{\left[\epsilon_{0} s+\epsilon(x-s)\right]}
\end{aligned}
$$

B

Question: What is the free surface charge density on the lower electrode? Solution:

$$
\sigma_{s}(x=0)=\epsilon E_{1}=\frac{\epsilon \epsilon_{0} V_{0}}{\epsilon_{0} s+\epsilon(x-s)}
$$

C
Question: What is the capacitance $C(x)$ of the capacitor?

Solution:

$$
C(x)=\frac{\sigma_{s} A}{V_{0}}=\frac{\epsilon \epsilon_{0} A}{\epsilon_{0} s+\epsilon(x-s)}
$$

D

Question: what is the electric force on the upper electrode?
Solution:

$$
f_{x}=\frac{1}{2} V_{0}^{2} \frac{d C(x)}{d x}=-\frac{1}{2} \frac{V_{0}^{2} \epsilon^{2} \epsilon_{0} A}{\left[\epsilon_{0} s+\epsilon(x-s)\right]^{2}}
$$

