MIT OpenCourseWare
http://ocw.mit.edu

### 6.641 Electromagnetic Fields, Forces, and Motion

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology<br>Department of Electrical Engineering and Computer Science<br>6.641, Electromagnetic Fields, Forces, and Motion<br>Quiz 1<br>March 18, 2008

The 6.641 Formula Sheet appears at the end of this Quiz. In addition, a $81 / 2$ " x 11 " formula sheet (both sides) that you have prepared is allowed.


1. (30 points) A line current of semi-infinite length stands perpendicularly upon a perfectly conducting ground plane at $z=0$.
a) Find a suitable image current to find the magnetic field for $z>0$. Does the direction of the image current surprise you?
b) What is the magnetic field magnitude and direction for $z>0$ ?
c) What is the surface current magnitude and direction on the $z=0$ surface of the conducting plane?

2. (30 points) Concentric cylindrical electrodes with respective radii $a$ and $b$ and depth $L$ are surrounded by free space with permittivity $\varepsilon_{0}$ and encloses an ohmic material for $a<r<b$ whose conductivity varies with radius as $\sigma(r)=\sigma_{0} r / a$ and has constant permittivity $\varepsilon$. A voltage $v$ is applied across the cylindrical electrodes. Neglect end effects at the top and bottom of the cylinder.
a) What is the electric field for $a<r<b$ ?
b) What are the surface charge densities at $r=a$ and $r=b$ ?
c) What is the volume charge density for $a<r<b$ ?
d) What is the total charge in the system?
e) What is the resistance between the cylindrical electrodes?
3. (40 points)


A dielectric sphere with permittivity $\varepsilon$ and radius $R$ has a potential imposed at $r=R$

$$
\Phi(r=R, \theta)=\mathrm{V}_{0} \cos \theta
$$

Free space with permittivity $\varepsilon_{0}$ surrounds the sphere for $r>R$.
a) There is no volume charge for $0<r<R$ and $r>R$ and $\Phi(r=\infty, \theta)=0$. Laplace's equation for the scalar electric potential in spherical coordinates is:

$$
\nabla^{2} \Phi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \Phi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \Phi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \Phi}{\partial \phi^{2}}=0
$$

Guess a solution to Laplace's equation of the form $\Phi(r, \theta)=A r^{p} \cos \theta$ and find all allowed values of $p$.
b) Which of your scalar electric potential solutions in part (a) are finite at $r=0$ ?
c) Which of your solutions in part (a) have zero potential at $r=\infty$ ?
d) Using the results of parts (b) and (c) find the scalar electric potential solutions for $0 \leq r \leq R$ and $r \geq R$ that satisfy the boundary condition $\Phi(r=R, \theta)=\mathrm{V}_{0} \cos \theta$.
e) Find the electric field in the regions $0 \leq r<R$ and $r>R$.

Hint: $\bar{E}=-\nabla \Phi=-\left[\frac{\partial \Phi}{\partial r} \bar{i}_{r}+\frac{1}{r} \frac{\partial \Phi}{\partial \theta} \bar{i}_{\theta}\right]$
f) What is the surface charge distribution on the $r=R$ interface?

