MIT OpenCourseWare
http://ocw.mit.edu

6.641 Electromagnetic Fields, Forces, and Motion

Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.641 Electromagnetic Fields, Forces, and Motion
\section*{Quiz 1}
March 22, 2006

6.641 Formula Sheet appears at the end of this quiz. You are also allowed to bring one $81 / 2$ " $\times 11$ " sheet of notes (both sides) that you prepare.
1.

Image by MIT OpenCourseWare.
A charge q of mass m in free space is above a perfectly conducting ($\sigma=\infty$) ground plane for $\mathrm{z}<0$. The charge is released from rest at position $\mathrm{z}=\mathrm{d}$ at $\mathrm{t}=0$. Neglect the effects of gravity.
(a) What is the velocity of the charge as a function of position z ?
(b) How long does it take the charge to reach the $\mathrm{z}=0$ ground plane?

Hint: $\int \frac{d z}{\left[\frac{1}{z}-\frac{1}{d}\right]^{1 / 2}}=-\sqrt{z d(d-z)}+d^{3 / 2} \tan ^{-1} \sqrt{\frac{z}{d-z}}$
2.

Image by MIT OpenCourseWare.
A uniformly distributed line charge λ in the $\mathrm{z}=0$ plane extends from -L to L composed of two straight sections, $-\mathrm{L}<\mathrm{x}<-\mathrm{a}$ and $\mathrm{a}<\mathrm{x}<\mathrm{L}$, and a semi-circular section of radius a. The line charge is within free space. The potential and electric field for any line charge distribution is
$\Phi(\bar{r})=\int_{l^{\prime}} \frac{\lambda\left(\bar{r}^{\prime}\right) d l^{\prime}}{4 \pi \varepsilon_{0}\left|\bar{r}-\bar{r}^{\prime}\right|}$
$\bar{E}(\bar{r})=\int_{l^{\prime}} \frac{\lambda\left(\bar{r}^{\prime}\right) \overline{i_{r^{\prime} r}} d l^{\prime}}{4 \pi \varepsilon_{0}\left|\bar{r}-\bar{r}^{\prime}\right|^{2}}$
(a) Find the potential at the point $(x=0, y=0, z=0)$.
(b) Find the electric field (magnitude and direction) at ($x=0, y=0, z=0$).

Image by MIT OpenCourseWare.
A line current in free space in the $\mathrm{z}=0$ plane and carrying a current I is shaped like a "hairpin", composed of two straight sections of semi-infinite length a distance 2a apart, joined by a semicircular section of radius a. The magnetic field from a line current is given by the Biot-Savart law:

$$
\bar{H}(\bar{r})=\frac{1}{4 \pi} \int \frac{\bar{I} d l^{\prime} \times \overline{i_{r^{\prime} r}}}{\left|\bar{r}-\bar{r}^{\prime}\right|^{2}}
$$

What is the magnetic field \bar{H} at the point ($\mathrm{x}=0, \mathrm{y}=0, \mathrm{z}=0$) ?
Hint: one or more of the following indefinite integrals may be useful:
a) $\int \frac{d x}{\left[x^{2}+a^{2}\right]^{1 / 2}}=\ln \left[x+\sqrt{x^{2}+a^{2}}\right]$
b) $\int \frac{x d x}{\left[x^{2}+a^{2}\right]^{1 / 2}}=\left[x^{2}+a^{2}\right]^{1 / 2}$
c) $\int \frac{d x}{\left[x^{2}+a^{2}\right]}=\frac{1}{a} \tan ^{-1} \frac{x}{a}$
d) $\quad \int \frac{d x}{\left[x^{2}+a^{2}\right]^{3 / 2}}=\frac{x}{a^{2}\left[x^{2}+a^{2}\right]^{1 / 2}}$
e) $\int \frac{x d x}{\left[x^{2}+a^{2}\right]^{3 / 2}}=-\frac{1}{\left[x^{2}+a^{2}\right]^{1 / 2}}$

