MASSACHUSETTS INSTITUTE OF TECHNOLOGY

 Department of Electrical Engineering and Computer ScienceProblem Set No. $8 \quad$ 6.632 Electromagnetic Wave Theory
Spring Term 2003
Reading assignment: Section 4.1-4.3, J. A. Kong, "Electromagnetic Wave Theory"
Problem P8.1 In the Čerenkov radiation, the total energy radiated by a cylinder of path l and radius ρ is

$$
S_{\rho}=\frac{\mu q^{2} l}{4 \pi} \int_{0}^{\infty} d \omega \omega\left(1-\frac{1}{n^{2} \beta^{2}}\right)
$$

So, the energy lost per unit length per unit frequency band is

$$
\frac{d S_{\rho}}{d l d \omega}=\frac{\mu q^{2}}{4 \pi} \omega\left(1-\frac{1}{n^{2} \beta^{2}}\right)
$$

(a) By $E_{p h o t o n}=\hbar \omega$ and $\frac{d \omega}{d \lambda}=\frac{2 \pi c}{\lambda^{2}}$, show that the number of photon radiated on unit path at wave length λ is

$$
\frac{d^{2} N}{d l d \lambda}=\frac{q^{2} c}{2 \lambda^{2} \hbar} \mu\left(1-\frac{1}{n^{2} \beta^{2}}\right)
$$

and show the frequently used formula $\frac{d N}{d l} \propto \frac{d \lambda}{\lambda^{2}} \sin ^{2} \theta$, which gives the dependence of N on λ and θ.
(b) Gas Čerenkov detector is widely used in particle experiment. The refractive index of the gas n is typically 1.002 . What will be the angle for the Cerenkov radiation in case of $\beta=1$?
(c) Most energy is radiated by the waves in the band $350 \mathrm{~nm} \sim 550 \mathrm{~nm}$. How many photons can you get on unit path? In order to get 100 photons for the detector, how long is the path (l) ? This is the size the detector should be. Note that the parameters are as follows: $\hbar=6.63 \times 10^{-34} /(2 \pi) \mathrm{J} \cdot \mathrm{s} / \mathrm{rad}, q=1.6 \times 10^{-19} \mathrm{C}, \beta=1$.

Problem P8.2

(a) Find the far field electric and magnetic vectors due to an infinitely long line current source with $I(z)=I_{0} e^{i k_{z} z}$, placed along the z axis in free space. Show that the electric and magnetic fields in the far field are

$$
\begin{aligned}
& \bar{E}(\bar{r}) \approx \frac{I_{0} k_{\rho}}{4 \omega \epsilon} \sqrt{\frac{2}{\pi k_{\rho} \rho}}\left[\hat{\rho} k_{z}-\hat{z} k_{\rho}\right] e^{i\left(k_{\rho} \rho+k_{z} z-\frac{\pi}{4}\right)} \\
& \bar{H}(\bar{r}) \approx \hat{\phi} \frac{I_{0} k_{\rho}}{4} \sqrt{\frac{2}{\pi k_{\rho} \rho}} e^{i\left(k_{\rho} \rho+k_{z} z-\frac{\pi}{4}\right)}
\end{aligned}
$$

(b) Evaluate the real part of the complex Poynting's vector in the far field. What happens if $k_{z}>k$?
(c) Determine the equi-phase surfaces (phase fronts) in the far field, both for $k_{z}<k$ and $k_{z}>k$. Is the real part of the Poynting's vector normal to the equi-phase surfaces?

Problem P8.3

The electric field produced by a particle with charge q moving at a velocity $v \hat{z}$ is

$$
\bar{E}(\bar{r})=\frac{-q}{8 \pi \omega \epsilon}\left[\hat{z} k^{2}+i \frac{\omega}{v} \nabla\right] H_{0}^{(1)}\left(k_{\rho} \rho\right) e^{i \omega z / v}
$$

In the radiation zone, $k_{\rho} \rho \gg 1$, and $H_{0}^{(1)}\left(k_{\rho} \rho\right) \approx \sqrt{\frac{2}{i \pi k_{\rho} \rho}} e^{i k_{\rho} \rho}$.
(a) Write the electric field in the radiation zone.
(b) Write the wave vector \bar{k}.
(c) What is the range of speed v in which k_{ρ} is real?
(d) Specify the polarization of the wave.

Problem P8.4

The inner product or dot product between two column vector \bar{A} and \bar{B}, each represented as a $n \times 1$ matrix a and b can be expressed as

$$
\bar{A} \cdot \bar{B}=a^{T} b
$$

and the outer product between \bar{A} and \bar{B} can be expressed as

$$
\bar{A} \bar{B}=a b^{T}
$$

Let $\bar{A}=(\hat{x}+\hat{y}+\hat{z})$, so whereas

$$
\bar{A} \cdot \bar{A}=3
$$

is a scaler, the outer product of the two vector:

$$
\bar{A} \bar{A}
$$

gives

$$
\left[\begin{array}{lll}
\hat{x} \hat{x} & \hat{x} \hat{y} & \hat{x} \hat{z} \\
\hat{y} \hat{x} & \hat{y} \hat{y} & \hat{y} \hat{z} \\
\hat{z} \hat{x} & \hat{z} \hat{y} & \hat{z} \hat{z}
\end{array}\right]
$$

Each column of the resulting dyadic can be view as a vector and operators that operate on the dyadic operate in a column-wise fashion:

$$
\nabla \cdot\left[\begin{array}{lll}
\hat{x} \hat{x} & \hat{x} \hat{y} & \hat{x} \hat{z} \\
\hat{y} \hat{x} & \hat{y} \hat{y} & \hat{y} \hat{z} \\
\hat{z} \hat{x} & \hat{z} \hat{y} & \hat{z} \hat{z}
\end{array}\right]=(\nabla \cdot \bar{A}) \hat{x}+(\nabla \cdot \bar{A}) \hat{y}+(\nabla \cdot \bar{A}) \hat{z}
$$

(i) Show that $\nabla \cdot \overline{\bar{I}}=\nabla$
(ii) By taking the divergence of the equation

$$
\begin{equation*}
\nabla \times \nabla \times \overline{\bar{G}}-k^{2} \overline{\bar{G}}=\overline{\bar{I}} \delta\left(\bar{r}-\bar{r}^{\prime}\right) \tag{P1}
\end{equation*}
$$

show that

$$
-k^{2} \nabla \cdot \overline{\bar{G}}=\nabla \delta\left(\bar{r}-\bar{r}^{\prime}\right)
$$

(iii) Expand (P1), show that

$$
\left(\nabla^{2}+k^{2}\right) \overline{\bar{G}}=-\overline{\bar{I}} \delta\left(\bar{r}-\bar{r}^{\prime}\right)+\nabla \nabla \cdot \overline{\bar{G}}
$$

(iv) Combine part (ii) and (iii), show that

$$
\left(\nabla^{2}+k^{2}\right) \overline{\bar{G}}=-\left(\overline{\bar{I}}+\frac{1}{k^{2}} \nabla \nabla\right) \delta\left(\bar{r}-\bar{r}^{\prime}\right)
$$

and hence by writting $\overline{\bar{G}}=\left(\overline{\bar{I}}+\frac{1}{k^{2}} \nabla \nabla\right) g$, all we need to solve is the scaler equation $\left(\nabla^{2}+k^{2}\right) g=-\delta\left(\bar{r}-\bar{r}^{\prime}\right)$.

Problem P8.5

What is the differential equation that governs the one-dimensional scalar Green's function in free space $g\left(x, x^{\prime}\right)$? Show that the one-dimensional Green's function is

$$
g\left(x, x^{\prime}\right)=\frac{i e^{i k\left|x-x^{\prime}\right|}}{2 k}
$$

Problem P8.6

The magnetic field \bar{H} and electric field \bar{E} of a Hertzian dipole at very large distances $(k r \gg 1)$ are

$$
\begin{aligned}
\bar{H} & =-\hat{\phi} \frac{\omega k q \ell}{4 \pi r} \sin \theta \cos (k r-\omega t) \\
\bar{E} & =-\hat{\theta} \frac{k^{2} q \ell}{4 \pi \epsilon_{o} r} \sin \theta \cos (k r-\omega t)
\end{aligned}
$$

(a) Find the Poynting's power density vector \bar{S} as a function of time. What is the timeaveraged power density vector $\langle\bar{S}\rangle$?
(b) By integrating the Poynting vector over the surface of a sphere of radius r, find the time-averaged power P radiated by the Hertzian dipole.
(c) The amplitude of the current in the Hertzian dipole is $I_{o}=\omega q$. By using $P=\frac{1}{2} I_{o}^{2} R_{r a d}$, find the radiation resistance $R_{r a d}$ of the Hertzian dipole.

