MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Problem Set No. 10	6.632 Electromagnetic Wave Theory
Spring Term 2003	

Reading assignment: Section 4.3, 4.4, 5.1 J. A. Kong, "Electromagnetic Wave Theory"

Problem P10.1

In Magnetic Resonance Imaging (MRI) study, it is very useful to define a rotating frame of reference which rotates about the z axis at the Larmor frequency ($\omega_0 = \gamma B_0$, γ is the gyromagnetic ratio). Consider the bulk magnetic moment $M_0 \hat{z}$ placed in a DC magnetic field $B_0 \hat{z}$. When a MRI transmitting coil generates a magnetic field of frequency ω_1 , effective total magnetic field can be described as

$$\overline{B} = B_0 \hat{z} + B_1 (\cos(\omega_1 t) \hat{x} - \sin(\omega_1 t) \hat{y})$$

And the rotating coordinate can be defined as

$$\hat{x}' = \hat{x}\cos(\omega_1 t) - \hat{y}\sin(\omega_1 t)$$
$$\hat{y}' = \hat{x}\sin(\omega_1 t) + \hat{y}\cos(\omega_1 t)$$
$$\hat{z}' = \hat{z}$$

- (1) Show that when $\omega_1 = \omega_0 = \gamma B_0$ (called "on resonance"), magnetic moment \overline{M} will respond to this B_1 field as a rotation about the x' axis in the rotating frame. In other words, the effective B_1 field is $B_1\hat{x}'$.
- (2) Also show that if $\omega_1 \neq \omega_0$ (called "off resonance"), the effective B_1 is the vector sum of $B_1 \hat{x}'$ and $\Delta B_0 \hat{z}'$, where $\Delta B_0 = (\omega_0 \omega_1)/\gamma$.

Problem P10.2

(a) In MRI, the resonance frequency (Larmor frequency) ω_0 of a spin particle is related to the magnetic field B_0 by gyromagnetic ratio, $\omega_0 = \gamma B_0$.¹ H nucleus has two spin states. The energy of the photon needed to cause a transition between the two spin states of ¹ H nucleus in a 1.5T magnetic field is 4.23×10^{-26} J. What is the gyromagnetic ration of ¹ H? (Note that the energy E of a photon at frequency ω is $E = \hbar \omega$, where $\hbar = 6.63 \times 10^{-34}$ J s.)

(b) A sample contains two small distinct water locations where there is ¹ H spin density. In a uniform field, each of the ¹ H have the same Larmor frequency. However, if a linear gradient G_x is superimposed on the main magnetic filed B_0 , the Larmor frequency will depend on position along the x axis. $\omega = \gamma(B_0 + xG_x) = \omega_0 + \gamma xG_x$. The MRI spectrum contains frequencies of 63.872 MHz and 63.867 MHz when B_0 is 1.5 T and $G_x = 1 \times 10^{-2}$ T/m. What are the locations of the water?

Problem P10.3

(a) Consider an array of two out-of-phase but equal amplitude \hat{z} -directed Hertzian dipoles as shown in Fig. 10.3. The wavelength is λ .

Fig. 10.3 Show that the array factor $|F(\phi)|$ may be expressed as

$$|F(\phi)| = \left| 2\cos\left[\frac{kd}{2}\sin\phi - \frac{\psi}{2}\right] \right|$$

- (b) A broadcast array of two vertical towers with equal current amplitude is to have a horizontal plane pattern such that
 - (i) maximum field intensity is to the north $(\phi = 90^{\circ})$
 - (ii) the only nulls are at $\phi = 225^{\circ}$ and $\phi = 315^{\circ}$.

Specify the arrangement of the towers, their spacing and phasing.

Problem P10.4

An electric dipole antenna with dipole moment $I\ell$ is oriented in the \hat{z} direction and is placed at the corner of a wall as shown in the figure. The ground and the wall are considered to be perfectly conducting and their areas are assumed to be infinite.

Fig. 10.4

- (a) Find the three images of the dipole antenna. Indicate the coordinates and the orientations of the images.
- (b) Explain why the radiation field from the dipole antenna is zero everywhere if d = 0.
- (c) Let h = 0. The radiation pattern of the electric field |E| is shown in Figure 10.4.c, where the maximum value $|E|_{\text{max}}$ appears at $\theta = 90^{\circ}$, and the nulls appear at $\theta = 0$ and θ_o .

Fig. 10.4.c

- (i) What is the value of θ_o ?
- (ii) Find the distance d in terms of wavelength λ .
- (d) Let h = 0. Find the value(s) of d in terms of wavelength λ such that the radiated power along the \hat{x} axis is zero.
- (e) What is the field in region z < 0, and what is the field in region x < 0?
- (f) Let $h = \lambda/2$ and $d = \lambda/4$. Using pattern multiplication technique, sketch the radiation pattern on the xz-plane.