MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

Problem Set No. 16.632 Electromagnetic Wave TheorySpring Term 2003

Reading assignment: Section 1.8, 3.1, 3.2, J. A. Kong, "Electromagnetic Wave Theory"

Problem P1.1

For each of the following constitutive relations, state whether the given medium is

- (1) Isotropic/anisotropic/bianisotropic,
- (2) Linear/nonlinear,
- (3) Spatially/temporally dispersive,
- (4) Homogeneous/inhomogeneous.
- (a) Cholesteric liquid crystals can be modelled by a spiral structure with constitutive relations given by

$$\overline{D} = \begin{pmatrix} \epsilon(1+\delta\cos Kz) & \epsilon\delta\sin Kz & 0\\ \epsilon\delta\sin Kz & \epsilon(1-\delta\cos Kz) & 0\\ 0 & 0 & \epsilon_z \end{pmatrix} \cdot \overline{E}$$

where the spiral direction is along the z axis.

(b) When a magnetic field \overline{B}_0 is applied to a conductor carrying a current, an electric field \overline{E} is developed. This is called the *Hall effect*. Assuming the conduction carrier drifts with a mean velocity \overline{v} proportional to $R\sigma\overline{E}$, the constitutive relation that takes care of the Hall effect is given by

$$\overline{J} = \sigma \left(\overline{E} + R\sigma \overline{E} \times \overline{B}_0 \right)$$

where σ is the conductivity and R is the Hall coefficient. For copper, $\sigma \approx 6.7 \times 10^7 \,\mathrm{mho/m}$ and $R \approx -5.5 \times 10^{-11} \,\mathrm{m^3/coul}$.

(c) An isotropic dielectric can exhibit the *Kerr effect* when placed in an electric field. In this case the permittivity can be written as

$$\epsilon_{ij} = \epsilon \delta_{ij} + \sigma E_i E_j$$

where ϵ is the unperturbed permittivity. The principal axis of ϵ_{ij} coincides with the electric field.

Problem P1.2

- (a) The complex permittivity for bottom round steak is about $\epsilon = 40(1 + i0.3)\epsilon_o$ at the operating frequency (2.5 GHz) of a microwave oven. What is the penetration depth?
- (b) Calculate loss tangents and skin depths for sea water at frequencies 60 Hz and 10 MHz. Sea water can be characterized by conductivity $\sigma = 4 \text{ mho/m}$, permittivity $\epsilon = 80\epsilon_0$, and permeability $\mu = \mu_o$ at those frequencies.

(c) A 100-Hz electromagnetic wave is propagating down into the sea water with an electric field intensity E of 1 V/m just beneath the sea surface. What is the intensity of E at a depth of 100 m? What are the time-average Poynting's power densities just beneath the surface and at a depth of 100 m?

Problem P1.3

- (a) An ionized plasma is dispersive; derive its group velocity v_g if $\mu = \mu_0$ and $\epsilon = \epsilon_0(1 \omega_p^2/\omega^2)$, where $\omega_p = \sqrt{\mathrm{Ne}^2/m\epsilon_o}$, N is the number of free electrons per cubic meter, e is the charge of an electron (coulombs), and m is the mass of an electron (kg).
- (b) What is the difference in arrival times between a flash of light ($\lambda = 0.5\mu$ m) and a simultaneous radio pulse (f = 10 MHz) seen through an idealized homogeneous ionosphere where $\omega_p = 2\pi \times 8$ MHz along a path of 100 km?

Problem P1.4

To shield a room from radio interference, the room must be enclosed in a layer of copper five skin-depths thick. If the frequency to be shielded against in 10 kHz to 1 GHz, what should be the thickness of the copper (in millimeters)? For copper, $\epsilon = \epsilon_0$, $\mu = \mu_0$ and $\sigma = 5.8 \times 10^7$ mho/m.