Solutions to practice problem set 12

Note: There is a minor error in the statement of Exercise 7.21, part b. The last equation of that part should be $Z_{J}=-(-2)^{n}(2 n-1) /\left(n^{2}-n\right)$. The error is corrected in the statement here.

Exercise 7.6 Consider a binary hypothesis testing problem where H is 0 or 1 and a one dimensional observation Y is given by $Y=H+U$ where U is uniformly distributed over $[-1,1]$ and is independent of H.
a) Find $\mathrm{f}_{Y \mid H}(y \mid 0), \mathrm{f}_{Y \mid H}(y \mid 1)$ and the likelihood ratio $\Lambda(y)$.

Solution: Note that $f_{Y \mid H}$ is simply the density of U shifted by H, i.e.,

$$
\mathrm{f}_{Y \mid H}(y \mid 0)=\left\{\begin{array}{rl}
1 / 2 ; & -1 \leq y \leq 1 \\
0 ; & \text { elsewhere }
\end{array} \quad \mathrm{f}_{Y \mid H}(y \mid 1)=\left\{\begin{aligned}
1 / 2 ; & 0 \leq y \leq 2 \\
0 ; & \text { elsewhere }
\end{aligned}\right.\right.
$$

The likelihood ratio $\Lambda(y)$ is defined only for $-1 \leq y \leq 2$ since neither conditional density is nonzero outside this range.

$$
\Lambda(y)=\frac{f_{Y \mid H}(y \mid 0)}{f_{Y \mid H}(y \mid 1)}=\left\{\begin{aligned}
\infty ; & -1 \leq y<0 \\
1 ; & 0 \leq y \leq 1 \\
0 ; & 1<y \leq 2
\end{aligned}\right.
$$

b) Find the threshold test at η for each $\eta, 0<\eta<\infty$ and evaluate the conditional error probabilities, $q_{0}(\eta)$ and $q_{1}(\eta)$.
Solution: Since $\Lambda(y)$ has finitely many (3) possible values, all values of η between any adjacent pair lead to the same threshold test. Thus, for $\eta>1, \Lambda(y)>\eta$, leads to the decision $\hat{h}=0$ if and only if (iff) $\Lambda(y)=\infty$, i.e., iff $-1 \leq y<0$. For $\eta=1$, the rule is the same, $\Lambda(y)>\eta$ iff $\Lambda(y)=\infty$, but here there is a 'don't care' case $\Lambda(y)=1$ where $0 \leq y \leq 1$ leads to $\hat{h}=1$ simply because of the convention for the equal case taken in (7.14). Finally for $\eta<1, \Lambda(Y)>\eta$ iff $-1 \leq y \leq 1$.

Consider $q_{0}(\eta)$ (the error probability conditional on $H=0$ when a threshold η is used) for $\eta>1$. Then $\hat{h}=0$ iff $-1 \leq y<0$, and thus an error occurs (for $H=0$) iff $y \geq 0$. Thus $q_{0}(\eta)=\operatorname{Pr}\{Y \geq 0 \mid H=0\}=1 / 2$. An error occurs given $H=1$ (still assuming $\eta>1)$ iff $-1 \leq y<0$. These values of y are impossible under $H=1$ so $q_{1}(\eta)=0$. These error probabilities are the same if $\eta=1$ because of the handling of the don't care cases.
For $\eta<1, \hat{h}=0$ iff $y \leq 1$. Thus $q_{0}(\eta)=\operatorname{Pr}\{Y>1 \mid H=0\}=0$. Also $q_{1}(\eta)=$ $\operatorname{Pr}\{Y \leq 1 \mid H=1\}=1 / 2$.
c) Find the error curve $u(\alpha)$ and explain carefully how $u(0)$ and $u(1 / 2)$ are found (hint: $u(0)=1 / 2)$.

Solution: We have seen that each $\eta \geq 1$ maps into the pair of error probabilities $\left(q_{0}(\eta), q_{1}(\eta)\right)=(1 / 2,0)$. Similarly, each $\eta<1$ maps into the pair of error probabilities $\left(q_{0}(\eta), q_{1}(\eta)\right)=(0,1 / 2)$. The error curve contains these points and also contains the straight lines joining these points as shown below (see Figure 7.5). The point $u(\alpha)$ is the value of $q_{0}(\eta)$ for which $q_{1}(\eta)=\alpha$. Since $q_{1}(\eta)=0$ for $\eta \geq 1, q_{0}(\eta)=1 / 2$ for those values of η and thus $u(0)=1 / 2$. Similarly, $u(1 / 2)=0$.

d) Describe a decision rule for which the error probability under each hypothesis is $1 / 4$. You need not use a randomized rule, but you need to handle the don't-care cases under the threshold test carefully.

Solution: The don't care cases arise for $0 \leq y \leq 1$ when $\eta=1$. With the decision rule of (7.14), these don't care cases result in $\hat{h}=1$. If half of those don't care cases are decided as $\hat{h}=0$, then the error probability given $H=1$ is increased to $1 / 4$ and that for $H=0$ is decreased to $1 / 4$. This could be done by random choice, or just as easily, by mapping $y>1 / 2$ into $\hat{h}=1$ and $y \leq 1 / 2$ into $\hat{h}=0$.

Exercise 7.12 a) Use Wald's equality to show that if $\bar{X}=0$, then $\mathrm{E}\left[S_{J}\right]=0$ where J is the time of threshold crossing with one threshold at $\alpha>0$ and another at $\beta<0$.

Solution: Wald's equality holds since $\mathrm{E}[|J|]<\infty$, which follows from Lemma 7.5.1. Thus $\mathrm{E}\left[S_{J}\right]=\bar{X} \mathrm{E}[J]$. Since $\bar{X}=0$, it follows that $\mathrm{E}\left[S_{J}\right]=0$.
b) Obtain an expression for $\operatorname{Pr}\left\{S_{J} \geq \alpha\right\}$. Your expression should involve the expected value of S_{J} conditional on crossing the individual thresholds (you need not try to calculate these expected values).
Solution: Writing out $\mathrm{E}\left[S_{J}\right]=0$ in terms of conditional expectations,

$$
\begin{aligned}
\mathrm{E}\left[S_{J}\right] & =\operatorname{Pr}\left\{S_{J} \geq \alpha\right\} \mathrm{E}\left[S_{J} \mid S_{J} \geq \alpha\right]+\operatorname{Pr}\left\{S_{J} \leq \beta\right\} \mathrm{E}\left[S_{J} \mid S_{J} \leq \beta\right] \\
& =\operatorname{Pr}\left\{S_{J} \geq \alpha\right\} \mathrm{E}\left[S_{J} \mid S_{J} \geq \alpha\right]+\left[1-\operatorname{Pr}\left\{S_{J} \geq \alpha\right\}\right] \mathrm{E}\left[S_{J} \mid S_{J} \leq \beta\right]
\end{aligned}
$$

Using $\mathrm{E}\left[S_{J}\right]=0$, we can solve this for $\operatorname{Pr}\left\{S_{J} \geq \alpha\right\}$,

$$
\operatorname{Pr}\left\{S_{J} \geq \alpha\right\}=\frac{\mathrm{E}\left[-S_{J} \mid S_{J} \leq \beta\right]}{\mathrm{E}\left[-S_{J} \mid S_{J} \leq \beta\right]+\mathrm{E}\left[S_{J} \mid S_{J} \geq \alpha\right]}
$$

c) Evaluate your expression for the case of a simple random walk.

Solution: A simple random walk moves up or down only by unit steps, Thus if α and β are integers, there can be no overshoot when a threshold is crossed. Thus E $\left[S_{J} \mid S_{J} \geq \alpha\right]=\alpha$ and $\mathrm{E}\left[S_{J} \mid S_{J} \leq \beta\right]=\beta$. Thus $\operatorname{Pr}\left\{S_{J} \geq \alpha\right\}=\frac{|\beta|}{|\beta|+\alpha}$. If α is non-integer, then a positive
threshold crossing occurs at $\lceil\alpha\rceil$ and a lower threshold crossing at $\lfloor\beta\rfloor$. Thus, in this general case $\operatorname{Pr}\left\{S_{J} \geq \alpha\right\}=\frac{|\lfloor\beta\rfloor|}{\mid\lfloor\beta| |+\lceil\alpha\rceil}$.
d) Evaluate your expression when X has an exponential density, $\mathrm{f}_{X}(x)=a_{1} e^{-\lambda x}$ for $x \geq 0$ and $\mathrm{f}_{X}(x)=a_{2} e^{\mu x}$ for $x<0$ and where a_{1} and a_{2} are chosen so that $\bar{X}=0$.
Solution: Let us condition on $J=n, S_{n} \geq \alpha$, and $S_{n-1}=s$, for $s<\alpha$. The overshoot, $V=S_{J}-\alpha$ is then $V=X_{n}+s-\alpha$. Because of the memoryless property of the exponential, the density of V, conditioned as above, is exponential and $\mathrm{f}_{V}(v)=\lambda e^{-\lambda v}$ for $v \geq 0$. This does not depend on n or s, and is thus the overshoot density conditioned only on $S_{J} \geq \alpha$. Thus $\mathrm{E}\left[S_{J} \mid J \geq \alpha\right]=\alpha+1 / \lambda$. In the same way, $\mathrm{E}\left[S_{J} \mid S_{J} \leq \beta\right]=\beta-1 / \mu$. Thus

$$
\operatorname{Pr}\left\{S_{J} \geq \alpha\right\}=\frac{|\beta|+\mu^{-1}}{\alpha+\lambda^{-1}+|\beta|+\mu^{-1}}
$$

Note that it is not necessary to calculate a_{1} or a_{2}.
Exercise 7.17 Suppose $\left\{Z_{n} ; n \geq 1\right\}$ is a martingale. Show that

$$
\mathrm{E}\left[Z_{m} \mid Z_{n_{i}}, Z_{n_{i-1}}, \ldots, Z_{n_{1}}\right]=Z_{n_{i}} \text { for all } 0<n_{1}<n_{2}<\ldots<n_{i}<m .
$$

Solution: First observe from Lemma 7.6.1 that

$$
\mathrm{E}\left[Z_{m} \mid Z_{n_{i}}, Z_{n_{i}-1}, Z_{n_{i}-2}, Z_{1}\right]=Z_{n_{i}}
$$

This is valid for every sample value of every conditioning variable. Thus consider $Z_{n_{i}-1}$ for example. Since this equation has the same value for each sample value of $Z_{n_{i}-1}$, we could take the expected value of this conditional expectation over $Z_{n_{i}-1}$, getting $\mathrm{E}\left[Z_{m} \mid Z_{n_{i}}, Z_{n_{i}-2}, Z_{1}\right]=Z_{n_{i}}$. In the same way, any subset of these conditioning rv's could be removed, leaving us with the desired form.

Exercise 7.21: a) This exercise shows why the condition $\mathrm{E}\left[\left|Z_{J}\right|\right]<\infty$ is required in Lemma 7.8.1. Let $Z_{1}=-2$ and, for $n \geq 1$, let $Z_{n+1}=Z_{n}\left[1+X_{n}(3 n+1) /(n+1)\right]$ where X_{1}, X_{2}, \ldots are IID and take on the values +1 and -1 with probability $1 / 2$ each. Show that $\left\{Z_{n} ; n \geq 1\right\}$ is a martingale.
Solution: From the definition of Z_{n} above,

$$
\mathrm{E}\left[Z_{n} \mid Z_{n-1}, Z_{n-2}, \ldots, Z_{1}\right]=\mathrm{E}\left[Z_{n-1}\left[1+X_{n-1}(3 n-2) / n\right] \mid Z_{n-1}, \ldots, Z_{1}\right]
$$

Since the X_{n} are zero mean and IID, this is just $\mathrm{E}\left[Z_{n-1} \mid Z_{n-1} \ldots, Z_{1}\right]$, which is Z_{n-1}. Thus $\left\{Z_{n} ; n \geq 1\right\}$ is a martingale.
b) Consider the stopping trial J such that J is the smallest value of $n>1$ for which Z_{n} and Z_{n-1} have the same sign. Show that, conditional on $n<J, Z_{n}=(-2)^{n} / n$ and, conditional on $n=J, Z_{J}=-(-2)^{n}(n-2) /\left(n^{2}-n\right)$.
Solution: It can be seen from the iterative definition of Z_{n} that Z_{n} and Z_{n-1} have different signs if $X_{n-1}=-1$ and have the same sign if $X_{n-1}=1$. Thus the stopping
trial is the smallest trial $n \geq 2$ for which $X_{n-1}=1$. Thus for $n<J$, we must have $X_{i}=-1$ for $1 \leq i<n$. For $n=2<J, X_{1}$ must be -1 , so from the formula above, $Z_{2}=Z_{1}[1-4 / 2]=2$. Thus $Z_{n}=(-2)^{n} / n$ for $n=2<J$. We can use induction now for arbtrary $n<J$. Thus for $X_{n}=-1$,

$$
Z_{n+1}=Z_{n}\left[1-\frac{3 n+1}{n+1}\right]=\frac{(-2)^{n}}{n} \cdot \frac{-2 n}{n+1}=\frac{(-2)^{n+1}}{n+1}
$$

The remaining task is to compute Z_{n} for $n=J$. Using the result just derived for $n=J-1$ and using $X_{J-1}=1$,

$$
Z_{J}=Z_{J-1}\left[1+\frac{3(J-1)+1}{J}\right]=\frac{(-2)^{J-1}}{J-1} \cdot \frac{4 J-2}{J}=\frac{-(-2)^{J}(2 J-1)}{J(J-1)}
$$

c) Show that $\mathrm{E}\left[\left|Z_{J}\right|\right]$ is infinite, so that $\mathrm{E}\left[Z_{J}\right]$ does not exist according to the definition of expectation, and show that $\lim _{n \rightarrow \infty} \mathrm{E}\left[Z_{n} \mid J>n\right] \operatorname{Pr}\{J>n\}=0$.
Solution: We have seen that $J=n$ if and only if $X_{i}=-1$ for $1 \leq i \leq n-2$ and $X_{n-1}=1$. Thus $\operatorname{Pr}\{J=n\}=2^{-n+1}$ so

$$
\mathrm{E}\left[\left|Z_{J}\right|\right]=\sum_{n=2}^{\infty} 2^{n-1} \cdot \frac{2^{n}(2 n-1)}{n(n-1)}=\sum_{n=2}^{\infty} \frac{2(2 n-1)}{n(n-1)} \geq \sum_{n=2}^{\infty} \frac{4}{n}=\infty
$$

since the harmonic series diverges.
Finally, we see that $\operatorname{Pr}\{J>n\}=2^{n-1}$ since this event occurs if and only if $X_{i}=-1$ for $1 \leq i<n$. Thus

$$
\mathrm{E}\left[Z_{n} \mid J>n\right] \operatorname{Pr}\{J>n\}=\frac{2^{-n+1} 2^{n}}{n}=2 / n \rightarrow 0
$$

Section 7.8 explains the significance of this exercise.
Exercise 7.29 Let $\left\{Z_{n} ; n \geq 1\right\}$ be a martingale, and for some integer m, let $Y_{n}=$ $Z_{n+m}-Z_{m}$.
a) Show that $\mathrm{E}\left[Y_{n} \mid Z_{n+m-1}=z_{n+m-1}, Z_{n+m-2}=z_{n+m-2}, \ldots, Z_{m}=z_{m}, \ldots, Z_{1}=z_{1}\right]=$ $z_{n+m-1}-z_{m}$.
Solution: This is more straightforward if the desired result is written in the more abbreviated form

$$
\mathrm{E}\left[Y_{n} \mid Z_{n+m-1}, Z_{n+m-2}, \ldots, Z_{m}, \ldots, Z_{1}\right]=Z_{n+m-1}-Z_{m}
$$

Since $Y_{n}=Z_{n+m}-Z_{m}$, the left side above is

$$
\mathrm{E}\left[Z_{n+m}-Z_{m} \mid Z_{n+m-1}, \ldots, Z_{1}\right]=Z_{n+m-1}-\mathrm{E}\left[Z_{m} \mid Z_{n+m-1}, \ldots, Z_{m}, \ldots, Z_{1}\right]
$$

Given sample values for each conditioning rv on the right of the above expression, and particularly given that $Z_{m}=z_{m}$, the expected value of Z_{m} is simply the conditioning
value z_{m} for Z_{m}. This is one of those strange things that are completely obvious, and yet somehow obscure. We then have $\mathrm{E}\left[Y_{n} \mid Z_{n+m-1}, \ldots, Z_{1}\right]=Z_{n+m-1}-Z_{m}$.
b) Show that $\mathrm{E}\left[Y_{n} \mid Y_{n-1}=y_{n-1}, \ldots, Y_{1}=y_{1}\right]=y_{n-1}$.

Solution: In abbreviated form, we want to show that $\mathrm{E}\left[Y_{n} \mid Y_{n-1}, \ldots, Y_{1}\right]=Y_{n-1}$. We showed in part a) that $\mathrm{E}\left[Y_{n} \mid Z_{n+m-1}, \ldots, Z_{1}\right]=Y_{n-1}$. For each sample point $\omega, Y_{n-1}(\omega), \ldots, Y_{1}(\omega)$ is a function of $Z_{n+m-1}(\omega), \ldots, Z_{1}(\omega)$. Thus, the rv $\mathrm{E}\left[Y_{n} \mid Z_{n+m-1}, \ldots, Z_{1}\right]$ specifies the rv $\mathrm{E}\left[Y_{n} \mid Y_{n-1}, \ldots, Y_{1}\right]$, which then must be Y_{n-1}. c) Show that $\mathrm{E}\left[\left|Y_{n}\right|\right]<\infty$. Note that \mathbf{b}) and \mathbf{c}) show that $\left\{Y_{n} ; n \geq 1\right\}$ is a martingale.

Solution: Since $Y_{n}=Z_{n+m}-Z_{m}$, we have $\left|Y_{n}\right| \leq\left|Z_{n+m}\right|+\left|Z_{m}\right|$. Since $\left\{Z_{n} ; n \geq 1\right.$ is a martingale, $\mathrm{E}\left[\left|Z_{n}\right|\right]<\infty$ for each n so

$$
\mathrm{E}\left[\left|Y_{n}\right|\right] \leq \mathrm{E}\left[\left|Z_{n+m}\right|\right]+\mathrm{E}\left[\left|Z_{m}\right|\right]<\infty
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

