Solutions to Homework 10

6.262 Discrete Stochastic Processes
MIT, Spring 2011

Exercise 6.5:

Consider the Markov process illustrated below. The transitions are labelled by the rate $q_{i j}$ at which those transitions occur. The process can be viewed as a single server queue where arrivals become increasingly discouraged as the queue lengthens. The word timeaverage below refers to the limiting time-average over each sample-path of the process, except for a set of sample paths of probability 0 .

Part a) Find the time-average fraction of time p_{i} spent in each state $i>0$ in terms of p_{0} and then solve for p_{0}. Hint: First find an equation relating p_{i} to p_{i+1} for each i. It also may help to recall the power series expansion of e^{x}.

Solution: From equation (6.36) we know:

$$
p_{i} \frac{\lambda}{i+1}=p_{i+1} \mu, \quad \text { for } i \geq 0
$$

By iterating over i we get:

$$
\begin{aligned}
p_{i+1}=\frac{\lambda}{\mu(i+1)} & p_{i}=\left(\frac{\lambda}{\mu}\right)^{i+1} \frac{1}{(i+1)!} p_{0}, \quad \text { for } i \geq 0 \\
1 & =\sum_{i=0}^{\infty} p_{i} \\
& =p_{0}\left[1+\sum_{i=1}^{\infty}\left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!}\right] \\
& =p_{0} e^{\lambda / \mu}
\end{aligned}
$$

Where the last derivation is in fact the Taylor expansion of the function e^{x}. Thus,

$$
\begin{aligned}
p_{0} & =e^{-\lambda / \mu} \\
p_{i} & =\left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!} e^{-\lambda / \mu}, \quad \text { for } i \geq 1
\end{aligned}
$$

Part b) Find a closed form solution to $\sum_{i} p_{i} v_{i}$ where v_{i} is the departure rate from state i. Show that the process is positive recurrent for all choices of $\lambda>0$ and $\mu>0$ and explain
intuitively why this must be so.
Solution: We observe that $v_{0}=\lambda$ and $v_{i}=\mu+\lambda /(i+1)$ for $i \geq 1$.

$$
\begin{aligned}
\sum_{i \geq 0} p_{i} v_{i} & =\lambda e^{-\lambda / \mu}+\sum_{i \geq 1}\left\{[\mu+\lambda /(i+1)]\left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!} e^{-\lambda / \mu}\right\} \\
& =\lambda e^{-\lambda / \mu}+\mu e^{-\lambda / \mu} \sum_{i \geq 1}\left(\frac{\lambda}{\mu}\right)^{i} \frac{1}{i!}+\mu e^{-\lambda / \mu} \sum_{i \geq 1}\left(\frac{\lambda}{\mu}\right)^{i+1} \frac{1}{(i+1)!} \\
& =\lambda e^{-\lambda / \mu}+\mu e^{-\lambda / \mu}\left(e^{\lambda / \mu}-1\right)+\mu e^{-\lambda / \mu}\left(e^{\lambda / \mu}-1-\frac{\lambda}{\mu}\right) \\
& =2 \mu\left(1-e^{-\lambda / \mu}\right)
\end{aligned}
$$

The value of $\sum_{i} p_{i} v_{i}$ is finite for all values of $\lambda>0$ and $\mu>0$. So this process is positive recurrent for for all choices of transition rates λ and μ.

We saw that $P_{i+1}=\frac{\lambda P_{i}}{\mu(i+1)}$, so p_{i} must decrease rapidly in i for sufficiently large i. Thus the fraction of time spent in very high numbered states must be negligible. This suggests that the steady-state equations for the p_{i} must have a solution. Since ν_{i} is bounded between μ and $\mu+\lambda$ for all i , it is intuitively clear that $\sum_{i} \nu_{i} p_{i}$ is finite, so the embedded chain must be positive recurrent.

Part c) For the embedded Markov chain corresponding to this process, find the steady state probabilities π_{i} for each $i \geq 0$ and the transition probabilities $P_{i j}$ for each i, j.

Solution: Since as shown in part (b), $\sum_{i \geq 0} p_{i} v_{i}=1 /\left(\sum_{i \geq 0} \pi_{i} / v_{i}\right)<\infty$, we know that for all $j \geq 0, \pi_{j}$ is proportional to $p_{j} v_{j}$:

$$
\pi_{j}=\frac{p_{j} v_{j}}{\sum_{k \geq 0} p_{k} v_{k}}, \quad \text { for } j \geq 0
$$

So $\pi_{0}=\frac{\lambda e^{-\lambda / \mu}}{2 \mu\left(1-e^{-\lambda / \mu}\right)}=\frac{\rho}{2} \frac{1}{e^{\rho}-1}$ and for $j \geq 1$:

$$
\begin{aligned}
\pi_{j} & =\frac{[\mu+\lambda /(j+1)] \rho^{j} \frac{1}{j!} e^{-\rho}}{2 \mu\left(1-e^{-\rho}\right)} \\
& =\frac{\mu[1+\rho /(j+1)] \rho^{j} e^{-\rho}}{2 \mu\left(1-e^{-\rho}\right) j!} \\
& =\frac{\rho^{i}}{j!}\left[1+\frac{\rho}{j+1}\right] \frac{1}{2\left(e^{\rho}-1\right)}, \quad \text { for } j \geq 1
\end{aligned}
$$

The embedded Markov chain will look like:

The transition probabilities are:

$$
\begin{array}{rlr}
P_{01} & =1 \\
P_{i, i-1} & =\frac{(i+1) \mu}{\lambda+(i+1) \mu}, & \text { for } i \geq 1 \\
P_{i, i+1} & =\frac{\lambda}{\lambda+(i+1) \mu}, & \text { for } i \geq 1
\end{array}
$$

Finding the steady state distribution of this Markov chain gives the same result as found above.

Part d) For each i, find both the time-average interval and the time-average number of overall state transitions between successive visits to i.

Solution: Looking at this process as a delayed renewal reward process where each entry to state i is a renewal and the inter-renewal intervals are independent. The reward is equal to 1 whenever the process is in state i.

Given that transition $n-1$ of the embedded chain enters state i, the interval U_{n} is exponential with rate v_{i}, so $\mathbb{E}\left[U_{n} \mid X_{n-1}=i\right]=1 / v_{i}$. During this U_{n} time, reward is 1 and then it is zero until the next renewal of the process.

The total average fraction of time spent in state i is p_{i} with high probability.
So in the steady state, the total fraction of time spent in state $i\left(p_{i}\right)$ should be equal to the fraction of time spent in state i in one inter-renewal interval. The expected length of time spent in state i in one inter-renewal interval is $1 / v_{i}$ and the expected inter renewal interval ($\overline{W_{i}}$) is what we want to know:

$$
p_{i}=\frac{\bar{U}}{\overline{W_{i}}}=\frac{1}{v_{i} \overline{W_{i}}}
$$

Thus $\overline{W_{i}}=\frac{1}{p_{i} v_{i}}$.

$$
\begin{aligned}
& \overline{W_{0}}=\frac{e^{\rho}}{\lambda} \\
& \overline{W_{i}}=\frac{(i+1)!}{\mu \rho^{i}(i+1+\rho)} e^{\rho}, \quad \text { for } i \geq 1
\end{aligned}
$$

Applying Theorem 5.1.4 to the embedded chain, the expected number of transitions, $\mathrm{E}\left[T_{i i}\right]$ from one visit to state i to the next, is $\bar{T}_{i i}=1 / \pi_{i}$.

Exercise 6.9:

Let $q_{i, i+1}=2^{i-1}$ for all $i \geq 0$ and let $q_{i, i-1}=2^{i-1}$ for all $i \geq 1$. All other transition rates are 0 .

Part a) Solve the steady-state equations and show that $p_{i}=2^{-i-1}$ for all $i \geq 0$.
Solution: The defined Markov process can be shown as:

For each $i \geq 0, p_{i} q_{i, i+1}=p_{i+1} q_{i+1, i}$.

$$
\begin{gathered}
p_{i}=\frac{1}{2} p_{i-1}, \quad \text { for } i \geq 1 \\
1=\sum_{j \geq 0} p_{j}=p_{0}\left(1+\frac{1}{2}+\frac{1}{4}+\cdots\right)
\end{gathered}
$$

So $p_{0}=\frac{1}{2}$ and

$$
p_{i}=\frac{1}{2^{i+1}}, \quad i \geq 0
$$

Part b) Find the transition probabilities for the embedded Markov chain and show that the chain is null-recurrent.

Solution:

The embedded Markov chain is:

The steady state probabilities satisfy $\pi_{0}=1 / 2 \pi_{1}$ and $1 / 2 \pi_{i}=1 / 2 \pi_{i+1}$ for $i \geq 1$. So $2 \pi_{0}=\pi_{1}=\pi_{2}=\pi_{3}=\cdots$. This is a null-recurrent chain, as essentially shown in Exercise 5.2.

Part c) For any state i, consider the renewal process for which the Markov process starts in state i and renewals occur on each transition to state i. Show that, for each $i \geq 1$, the expected inter-renewal interval is equal to 2 . Hint: Use renewal reward theory.

Solution:

As explained in Exercise 6.5 part (d), the expected inter-renewal intervals of recurrence of state $i\left(\overline{W_{i}}\right)$ satisfies the equation $p_{i}=\frac{1}{v_{i} \overline{W_{i}}}$. Hence,

$$
\overline{W_{i}}=\frac{1}{v_{i} p_{i}}=\frac{1}{2^{-(i+1)} 2^{i}}=2
$$

Where $v_{i}=q_{i, i+1}+q_{i, i-1}=2^{i}$
Part d) Show that the expected number of transitions between each entry into state i is infinite. Explain why this does not mean that an infinite number of transitions can occur in a finite time.

Solution: We have seen in part b) that the embedded chain is null-recurrent. This means that, given $X_{0}=i$, for any given i, that a return to i must happen in a finite number of transitions (i.e., $\lim _{n \rightarrow \infty} F_{i i}(n)=1$). We have seen many rv's that have an infinite expectation, but, being rv's, have a finite sample value WP1.

Exercise 6.14:

A small bookie shop has room for at most two customers. Potential customers arrive at a Poisson rate of 10 customers per hour; They enter if there is room and are turned away, never to return, otherwise. The bookie serves the admitted customers in order, requiring an exponentially distributed time of mean 4 minutes per customer.

Part a) Find the steady state distribution of the number of customers in the shop.
Solution: The arrival rate of the customers is 10 customers per hour and the service time is exponentially distributed with rate 15 customers per hour (or equivalently with mean 4 minutes per customer). The Markov process corresponding to this bookie store is:

To find the steady state distribution of this process we use the fact that $p_{0} q_{0,1}=p_{1} q_{1,0}$ and $p_{1} q_{1,2}=p_{2} q_{2,1}$. So:

$$
\begin{aligned}
10 p_{0} & =15 p_{1} \\
10 p_{1} & =15 p_{2} \\
1 & =p_{0}+p_{1}+p_{2}
\end{aligned}
$$

Thus, $p_{1}=\frac{6}{19}, p_{0}=\frac{9}{19}, p_{2}=\frac{4}{19}$.

Part b) Find the rate at which potential customers are turned away.

Solution:

The customers are turned away when the process is in state 2 and when the process is in state 2 , at rate $\lambda=10$ the customers are turned away. So the overall rate at which the customers are turned away is $\lambda p_{2}=\frac{40}{19}$.

Part c) Suppose the bookie hires an assistant; the bookie and assistant, working together, now serve each customer in an exponentially distributed time of mean 2 minutes, but there is only room for one customer (i.e., the customer being served) in the shop. Find the new rate at which customers are turned away.

Solution:

The new Markov process will look like:

The new steady state probabilities satisfy $10 p_{0}=30 p_{1}$ and $p_{0}+p_{1}=1$. Thus, $p_{1}=\frac{1}{4}$ and $p_{0}=\frac{3}{4}$. The customers are turned away if the process is in state 1 and then this happens with rate $\lambda=10$. Thus, the overall rate at which the customers are turned away is $\lambda p_{1}=\frac{5}{2}$.

Exercise 6.16:

Consider the job sharing computer system illustrated below. Incoming jobs arrive from the left in a Poisson stream. Each job, independently of other jobs, requires pre-processing in system 1 with probability Q. Jobs in system 1 are served FCFS and the service times for successive jobs entering system 1 are IID with an exponential distribution of mean $1 / \mu_{1}$. The jobs entering system 2 are also served FCFS and successive service times are IID with an exponential distribution of mean $1 / \mu_{2}$. The service times in the two systems are independent of each other and of the arrival times. Assume that $\mu_{1}>\lambda Q$ and that $\mu_{2}>\lambda$. Assume that the combined system is in steady state.

Part a) Is the input to system 1 Poisson? Explain.
Solution: Yes. The incoming jobs from the left are Poisson process. This process is split in two processes independently where each job needs a preprocessing in system 1
with probability Q. We know that if a Poisson process is split into two processes, each of the processes are also Poisson. So the jobs entering the system 1 is Poisson with rate λQ.

Part b) Are each of the two input processes coming into system 2 Poisson?
Solution: By Burke's theorem, the output process of a $\mathrm{M} / \mathrm{M} / 1$ queue is a Poisson process that has the same rate as the input process. So both sequences entering system 2 are Poisson, the first one has rate $Q \lambda$ and the second one has rate $(1-Q) \lambda$. The overall input is merged process of these two that is going to be a Poisson with rate λ (Since these processes are independent of each other.)

Part d) Give the joint steady-state PMF of the number of jobs in the two systems. Explain briefly.

Solution: We call the number of customers being served in system 1 at time t as $X_{1}(t)$ and number of customers being served in system 2 at time t, as $X_{2}(t)$.

The splitting of the input arrivals from the left is going to make two independent processes with rates $Q \lambda$ and $(1-Q) \lambda$. The first process goes into system 1 and defines $X_{1}(t)$. The output jobs of system 1 at time t is independent of its previous arrivals. Thus the input sequence of system 2 is independent of system 1 . The two input processes of system 2 are also independent.

Thus, $X_{1}(t)$ is the number of customers in an $\mathrm{M} / \mathrm{M} / 1$ queue with input rate $Q \lambda$ and service rate μ_{1} and $X_{2}(t)$ is the number of customers in an $\mathrm{M} / \mathrm{M} / 1$ queue with input rate λ and service rate μ_{2}. The total number of the customers in the system is $X(t)=$ $X_{1}(t)+X_{2}(t)$ where $X_{1}(t)$ is independent of $X_{2}(t)$.

System one can be modeled as a birth death process where $q_{i, i+1}=Q \lambda$ and $q_{i, i-1}=\mu_{1}$. Thus, $\operatorname{Pr}\left\{X_{1}=i\right\}=\left(1-\rho_{1}\right) \rho_{1}^{i}$ in the steady state where $\rho_{1}=Q \lambda / \mu_{1}$. The same is true for system 2 , thus, $\operatorname{Pr}\left\{X_{2}=j\right\}=\left(1-\rho_{2}\right) \rho_{2}^{j}$ in the steady state where $\rho_{2}=\lambda / \mu_{2}$.

Due to the independency of X_{1} and X_{2},

$$
\begin{aligned}
\operatorname{Pr}\{X=k\} & =\operatorname{Pr}\left\{X_{1}+X_{2}=k\right\} \\
& =\sum_{i=0}^{k} \operatorname{Pr}\left\{X_{1}=i, X_{2}=k-i\right\} \\
& =\sum_{i=0}^{k} \operatorname{Pr}\left\{X_{1}=i\right\} \operatorname{Pr}\left\{X_{2}=k-i\right\} \\
& =\sum_{i=0}^{k}\left(1-\rho_{1}\right) \rho_{1}^{i}\left(1-\rho_{2}\right) \rho_{2}^{k-i} \\
& =\left(1-\rho_{1}\right)\left(1-\rho_{2}\right) \rho_{2}^{k} \sum_{i=0}^{k}\left(\rho_{1} / \rho_{2}\right)^{i} \\
& =\left(1-\rho_{1}\right)\left(1-\rho_{2}\right) \frac{\rho_{2}^{k}-\rho_{1}^{k}}{\rho_{2}-\rho_{1}}
\end{aligned}
$$

Part e) What is the probability that the first job to leave system 1 after time t is the same as the first job that entered the entire system after time t ?

Solution:

The first job that enters the system after time t is the same as the first job to leave system 1 after time t if and only if $X_{1}(t)=0$ (system 1 should be empty at time t, unless other jobs will leave system 1 before the specified job) and the first entering job to the whole system needs preprocessing and is routed to system 1 (and should need) which happens with probability Q. Since these two events are independent, the probability of the desired event will be $\left(1-\rho_{1}\right) Q=\left(1-\frac{Q \lambda}{\mu_{1}}\right) Q$.

Part f) What is the probability that the first job to leave system 2 after time t both passed through system 1 and arrived at system 1 after time t ?

Solution: This is the event that both systems are empty at time t and the first arriving job is routed to system 1 and is finished serving in system 1 before the first job without preprocesing enters system 2 . These three events are independent of each other.

The probability that both systems are empty at time t in steady state is $\operatorname{Pr}\left\{X_{1}(t)=0, X_{2}(t)=0\right\}=$ $\left(1-\rho_{1}\right)\left(1-\rho_{2}\right)$.

The probability that the first job is routed to system 1 is Q.
The service time of the first job in system 1 is called Y_{1} which is exponentially distributed with rate μ_{1} and the probability that the first job is finished before the first job without preprocessing enters system 2 is $\operatorname{Pr}\left\{Y_{1}<Z\right\}$ where Z is the r.v. which is the arrival time of the first job that does not need preprocessing. it is also exponentially distributed with rate $(1-Q) \lambda$. Thus, $\operatorname{Pr}\left\{Y_{1}<Z\right\}=\frac{\mu_{1}}{\mu_{1}+(1-Q) \lambda}$.

Hence, the total probability of the described event is $\left(1-\frac{Q \lambda}{\mu_{1}}\right)\left(1-\frac{\lambda}{\mu_{2}}\right) Q \frac{\mu_{1}}{\mu_{1}+(1-Q) \lambda}$.

MIT OpenCourseWare
http://ocw.mit.edu

6.262 Discrete Stochastic Processes

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

