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Exercise 5.6: 

Let {Xn; n ≥ 0} be a branching process with = 1.  X0 Let Y , σ2 be the mean and 
variance of the number of offspring of an individual. 

a) Argue that limn  Xn exists with probability 1 and either has the value 0 (with →∞
probability F10(∞)) or the value ∞ (with probability 1 − F10(∞)). 

Solution 5.6a We consider 2 special, rather trivial, cases before considering the impor
tant case (the case covered in the text). Let pi be the PMF of the number of offspring 
of each individual. Then if p1 = 1, we see that Xn = 1 for all n, so the statement to be 
argued is simply false. It is curious that this exercise has been given many times over the 
years with no one pointing this out. 

The next special case is where p0 = 0 and p1 < 1. Then Xn+1 ≥ Xn (i.e., the population 
never shrinks but can grow). Since Xn(ω) is nondecreasing for each sample path, either 
limn  Xn(ω) = ∞ or limn  Xn(ω) = j for some j < ∞. The latter case is impossible, →∞ →∞
since  mjPjj = j  p1 and thus P mjj = p1 → 0.

Ruling out these two trivial cases, we have p0 > 0 and p1 < 1 − p0. In this case, state 0 
is recurrent (i.e., it is a trapping state) and states 1, 2, . . . , are in a transient class. To see 
this, note that P10 = p0 > 0, so F11(∞) ≤ 1 − p0 < 1, which means by definition that state 
1 is transient. All states i > 1 communicate with state 1, so by Theorem 5.1.1, all states 
j ≥ 1 are transient. Thus one can argue that the process has ‘no place to go’ other than 0 
or ∞. 

The following ugly analysis makes this precise. Note from Lemma 5.1.1 part 4 that � 
lim P t jj = . 
t→∞ 

n

∞
≤t 

Since this sum is nondecreasing in t, the limit must exist and the limit must be finite This 
means that  

lim P n 
jj = 0 � t  n t 

 
→∞ ≥

 
Now we can write   P n 

1j = � n f
� Pj 

n−� n
≤ 1j j , from

�
 which it can be seen that limt P = →∞ n≥t 1j

0. 
From this, we see that for every finite integer �, 

�

 �  
lim Pn

1j = 0 
t→∞ 

�
n≥t

�
j=1 

This says that for every � > 0, there is a t sufficiently large that the probability of ever 
entering states 1 to � on or after step t is less than �. Since � > 0 is arbitrary, all sample 
paths (other than a set of probability 0) never enter states 1 to � after some finite time. 

 

�
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Since � is arbitrary, limn  Xn exists WP1 and is either 0 or ∞. By definition, it is 0 with →∞
probability F10(∞). 

b) Since Xn is the sum of a random number (Xn 1) of IID random variables each of −
mean Y and variance σ2, we have 

(  2 
V ar X 2

n) = E[Xn  1) −1]σ + Y V ar(Xn−

= E[ n
X Y 

2 
0]Y 

−1 
σ2 + V ar(Xn−1) 

=  
n−1  2 

Y σ2 + Y V ar(Xn−1) 

Where  
 we used the facts that E[ [X0]

1
Xn 1] = E n

Y 
− and X0 = 1. For Y = 1, we use −

induction on n to establish the desired result.The basic step (n = 1) is 

 
1 2 n Y 

n
 1 

V ar(X 2 
1) = σ = σ Y 

− −
, for n = 1. 

Y − 1 

Assume  
 that 2

V ar(Xn 1) = 
− (Y 

n
σ2Y 

n −1 1). − − 1)/(Y − Then from the recurrence 
equation 

) =  
 (   

n−1 2 +  
  

2{ 2  
n−2

V ar Xn Y σ Y σ Y (n 

= σ2 n 1

− 1 − 1)/(Y  1)
n 

− }
Y 

− (Y − 1)/(Y − 1). 

Which completes the inductive argument. For Y = 1, we have V ar(Xn) = σ2 + 
 ( ) = 2 2 +  ( ) = 2 +  ( ) = 2 V ar Xn 1 σ V ar X nσ V ar X nσ .− n  −2 0

Exercise 5.7: 

Using theorem 5.3.2, we will show that the chain is reversible by demonstrating a set 
{πi} of steady state probabilities for which πiPij = πj Pji for all i, j. Thus, we want to find 
{πi} satisfying 

dij d
(1) ij 	 πi  = πj  

k dik k djk 

Where we have used dij = dji in

�
 the upper righ

�
t corner of the above equation. This  

equation will�  be satisfied if we choose π b i to e proportional to 
�

k dik. Normalizing {πi}
to satisfy i πi = 1, we see that eq. (1) is satisfied by � 

πi = � �k d ik 

j k djk 

�
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Exercise 5.8: 

Note that if�πi is summed over i, the numerator term becomes the same as the denomi
nator, so that i πi = 1. Thus, using theorem 5.3.2., it suffices to show that πiPij

� = πj Pj
�
i. 

We have 

πiPij
πiPij

� =
M M 
k=0 πk m=0 Pkm 

Since the denominator is independen

�
t of i and

�
 j, and since the reversibility of the origi

nal chain implies that πiPij = πj Pji, we have the desired result. 

Exercise 5.10:


a) M/M/1:


λδ λδ λδ λδ λδ�� �� �� �� �� �� �� �� �� �� ...��0�� ��1�� ��2�� ��3�� ��4�� 
µδ µδ µδ µδ µδ 

1−λδ 1−(λ+µ)δ 1−(λ+µ)δ 1−(λ+µ)δ 1−(λ+µ)δ 

λδ λδ λδ λδ λδ�� �� �� �� �� �� �� ���� ��... m ...��0�� ��1�� ��2��
µδ 2µδ 3µδ mµδ mµδ 

1−λδ 1−(λ+µ)δ 1−(λ+2µ)δ 1−(λ+mµ)δ 

�� �� �� �� ���� �� �� �� ���� �� �� �� ��

From (5.40), we have


πi = ρi(1 − ρ), for i ≥ 0 where ρ = λ/µ and ρ < 1 (positive recurrent).


M/M/m: 

�� �� �� �� ���� �� �� �� ���� �� �� ��

Using the steady-state equations (5.25) and defining ρ = λ/(mµ), we have 

πi/πi 1 = λ/(iµ), for i < m; −

πi/πi 1 = ρ, for i ≥ m; −

πi/πi = (λ/µ)iπ /i, for i < m; −1 0

πi/πi 1 = ρiπ ; − 0m
m/m!, for i ≥ m

Since 
� 

i πi = 1, we have 
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� ∞ −1 
m 

−1 m

π + 
�−1  i=m−1

= 1 (λ/µ)i i
 

�
(

!
�

 
0 mm /m!

�
mρ)

/i + ρ  = 1 + 
�

(λ/µ)i/i! + 
m!(1 − ρ)

i=1 i=m i=1 

�

M/M/∞: Setting m = ∞ in the M/M/m result, we get: �
 
�i λ π

πi = 0 
, for all i  0 

µ i! 
≥

 
Using the Taylor sries expansion of eλ/mu = 

�
λ/µ)i

i ( /i!, we see that π0 = e−λ/µ. Thus, � 
λ 

πi = 
µ

�i exp(−λ/µ)
, for all i ≥ 0 

i! 

b) M/M/1: For the chain to be transient, we need λ/µ > 1, for null recurrent, λ/µ = 1, 
and for positive recurrent λ/µ < 1. 

M/M/m: For the chain to be transient, we need λ/mµ > 1, for null-recurrent, λ/mµ = 1, 
for positive recurrent λ/mµ < 1. 

M/M/∞: For the chain to be transient, we need λ > 0 and µ = 0 (i.e., customers arrive 
but they do not depart.) We can not have null-recurrence. For µ > 0, we show that the 
expected queue length is finite, which implies steady state probabilities. For the chain to 
be positive recurrent, µ > 0. 

c) Assume positiv� e recurrence for each queue.  
M/M/1: L = i iπi = ρ/(1 − ρ) = λ/(µ − λ). To find Lq, we observe that L is Lq plus 

the expected number of customers in the service, i.e., L = Lq + (a − π0). Thus, 

Lq = L − (1 − π0) = ρ2/(1 − ρ) = λ2/[µ(µ − λ)].


Using Little’s theorem,


W = L/λ = a/[µ(1 − ρ)] = 1/(µ − λ) 

Wq = Lq/λ = ρ/[µ(1 − ρ)] = λ/[µ(µ − λ)] 

M/M/m: 
There are customers in the queue only if all the servers are busy, i.e., if there are more 

customers than servers in the system: 
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� � 
Lq = (i − m)πi = (i − )  m ρiπ0m

m /m! = ρπ0(ρm)m/[(1 − ρ)2m!] 
i>m i>m 

Where π0 is given in part (a). The expected delay Wq in the queue is then given by 
Little’s formula of a customer in the system as Wq = Lq/λ. The delay W in the system is 
the queuing delay plus service delay, so W = Lq/λ + 1/µ. Finally, the expected number in 
the system is given by Little’s law again as L = Wλ = Lq + λ/µ. Thus, in terms of Lq, 

L = Lq + λ/µ 

W = Lq/λ + 1/µ 

Wq = Lq/λ 

M/M/∞: There are no customers waiting for service, so Lq = Wq = 0. Each customer 
waits in the system for its own service time, so W = 1/µ. By Little’s formula, L = λ/µ. 

Exercise 6.1: 

a) The holding interval U1 conditional on X0 = i is exponentially distributed with 
parameter vi. And vi is uniquely determined by transition rates qij as: � 

vi = qij = qi,i+1 + qi,i−1 = λ + µ 
j 

Thus, E[U1|X0 = i] = 1/vi = 1/(λ + µ). 

b) The holding interval Un between the time that state Xn 1 = l is entered and X− n 

entered, conditional on Xn 1 is jointly independent of Xm for all m = n−1. So, E[U1|X0 = −
i, X1 = i + 1] = E[U1|X0 = i] = 1/vi = 1/(λ + µ). 

The same is true for E[U1|X0 = i, X1 = i + 1]. 

c) Conditional on {X0 = i, Xi+1 = i +1}, we know that the first transition is an arrival, 
so the first arrival time (V ) is the same as the first holding interval (U). Thus, 

E[V |X0 = i, X1 = i + 1] = E[U1|X0 = i, X1 = i + 1] = 1/(λ + µ) 

Conditional on {X0 = i, Xi+1 = i−1}, we know that the first transition is a departure.So 
the time until the first arrival is sum of the time for first transition (i.e., a departure) and 
the time until the next arrival. The second term is exponentially distributed with rate λ, 
so we have: 

�

5



 

1 1
E[V |X0 = i, X1 = i − 1] = E[U1|X0 = i, X1 = i − 1] + E[V |X1 = i − 1] = + 

λ + µ λ 

d) Using the total expectation lemma, we have: 

E[V |X0 = i] = E[V |X0 = i, X1 = i + 1]Pr{X1 = i + 1|X0 = i} + 

E[V |X0 = i, X1� = i − 1]Pr{X1 = i − 1
  

|X0 = i}
1 λ 1 1 µ 1 

= + + = 
λ + µ λ + µ λ + µ λ

�
λ + µ λ 

Since this is true for any choice of i > 0, and it was assumed that X0 = i, for i > 0, 
E[V ] = 1/λ. 

Exercise 6.2: 

���� ����
1 2/5 2/5 2/5 2/5 

              0 1 2 3 4 ...

3/5

���� ����
3/5

���� ����
3/5

���� ����
3/5

���� ����
3/5 

The transition diagram for the embedded chain is: 

a) The steady state probabilities satisfy = 3 , 2  π0 π1 πi 1 = 3πi for i − ≥ 2. Iterating 5 5 5 on
these equations, 

2 2 i−1 5 2 i−1 

πi = πi 1 =
� �

π1 =
� �

π0, for i 
3 − 3 3 3 

≥ 1 

 �  5 2 i−1 

1 = π  i = π0 1
i  

⎡⎣ + 
≥0

�
= 6π

3 3 0

i≥1 

� � ⎤

Thus, 

⎦

1 
π0 = 

6 
5

�
2 
�i

πi = , for i ≥ 1. 
12 3 

b) The transition rates are q i i 
ij = Pij vi = Pij 2 . Therefore, q01 = 1, qi,i+1 = (2/5)2 and 

qi,i 1 = (3/5)2i for i = 1, 2, ....The steady state probabilities pi for the Markov process are −
proportional to  πi/vi = (5/12)(1/3)i for i ≥ 1 and π0/v0 = 1/6. Normalizing so that pi’s 
sum to one,we get: 

�� �� �� �� ���� �� �� �� ��
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4 
p0 = 

9 
10 1 i

pi = , for i 
3 

≥ 1 
9

The pi’s  

� �
decay faster than πi’s. This is because the transition rate vi increases with i. 

So, the mean time until a transition from the current state decreases with i. 

c) Since vi is growing unboundedly with increasing i and Pi,i+1 and Pi,i is constant for −1 

all i > 0, qij = Pij vi is also growing unboundedly with i for j = i + 1 and j = i − 1. Thus 
for any δ > 0, and for large enough n, the transition probabilities of the sample Markov 
process will be greater than 1 (i.e., 2/5 × 2nδ > 1) which is unacceptable as a transition 
probability. 

The embedded Markov chain of this Process is: 

��  
 

3

���� ����
1 

0  
/5

���� ��
2/5

 
1�� ��  

  ��2����
2/5 2/5 2/5

        
  ...  

��
m

3/5 3/5 3

��  − 1
/5

��
1 

����m����

i 3 3 3 2 3 3 
 1 

The steady state probabilities satisfy π0 = 3   π1, 2πi 1 = 3 πi for 2 ≤ i ≤ m − 5 1 5  and
2 

− 5

π   m 1 5 = πm. Iterating on these equations,−

2 2 i−1 5 2 i−1 

πi = πi 1 =
� �

π1 =
� �

π0, for 1 ≤ i ≤ m 
3

− 1 − 3 3 3 �
2 
�m−1 

πm = π
3 0

�  �    
m

�
m−1 5

�
2 
�i−1 �

2 
�m−1 2 m−1 

1 = πi = π0 1 + + = π
3  6  4

3  3 0 3 
i=0 i=1 

� �
−

� � �
Thus, we will have: 

� 

π0 = 6 − 4
�

2
� �−1 
 m−1 

3 

1 1 
5 

� �−
2
�i−1 

� �
2
�m−1 5 

� �i 
� � �m−1 

�−
2 2

π  = 6 − 4 = 6 − 4 , for 1 ≤ i ≤ m − 1 

� −
2 

=
�m−1  −1 

πm 6 
3

�
2 m

 
− 4

�
3 

� �

And as m →∞, this will be the same steady state distribution found in part (a). 

���� ���� ��
��

�� ����
��
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The steady state probabilities for the sampled time are proportional to πi/vi. Normal
izing these values give: 

�m  
� 

m�  − 11 i 1 −
5 1 1 1 m−  2 m−1 

πi/vi = 1 + + 6  4
2 3 2 3 3 

i=0 i=1 
 

� � � �
−

 

� � � � �
−1 

9 
�

1 
= 1 − 

� �
6  4

4 3m −
�

2
�m−1 

3 

�
And the steady state distribution of the sampled time Markov chain will be: 

 
4 1 −1 

p0 = 1
9

�
 − 

3m 

�
10 

�
1
�i � 

1 
�−1 

pi = 1 − , for 1 ≤ i 
9 3 3m ≤ m − 1 

1 m+1  
1 −1 

pm = 2
�

3 

�
1 − 

3m 

c) You observe that as m →∞, these 

�
are the same

�
 sampled time steady state distribution 

as found in part (b). 

4
lim p0 = 

m→∞ 9 
10 1

 

�i

lim pi = 

�
, for 1 ≤ i ≤ m − 1 

m→∞ 9 3 
lim pm = 0 

m→∞ 

One could also use a truncated chain in which state m has a self transition of probability 
2/5. This would change πm to (5/3)(2/3)m−1π0 but would change the solution in a fairly 
negligible fashion. 

 �� ��0 
1 

3/5 

 �� ��1 
2/5

3/5 

 �� ��2 
2/5

3/5 

... 
2/5

3/5 

 �� ��m − 1 
2/5

3/5 

�� ��m

2/5 

�� ��
�� ���� �� ��

 
���� �� ��
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