Solutions to Homework 6

6.262 Discrete Stochastic Processes MIT, Spring 2011

Exercise 1

Let $\{Y_n; n \ge 1\}$ be a sequence of rv's and assume that $\lim_{n\to\infty} \mathbb{E}[|Y_n|] = 0$. Show that $\{Y_n; n \ge 1\}$ converges to 0 in probability. Hint 1: Look for the easy way. Hint 2: The easy way uses the Markov inequality.

Solution: Applying the Markov inequality to $|Y_n|$ for arbitrary n and arbitrary $\epsilon > 0$, we have

$$\Pr\{|Y_n| \ge \epsilon\} \le \frac{\mathbb{E}[|Y_n|]}{\epsilon}$$

Thus going to the limit $n \to \infty$ for the given ϵ ,

$$\lim_{n \to \infty} \Pr\{|Y_n| \ge \epsilon\} = 0.$$

Since this is true for every $\epsilon > 0$, this satisfies the definition for convergence to 0 in probability.

Exercise 2 (4.2 in text)

The purpose of this exercise is to show that, for an arbitrary renewal process, N(t), the number of renewals in (0, t], has finite expectation.

a) Let the inter-renewal intervals have the distribution $F_X(x)$, with, as usual, $F_X(0) = 0$. Using whatever combination of mathematics and common sense is comfortable for you, show that numbers $\epsilon > 0$ and $\delta > 0$ must exist such that $F_X(\delta) \leq 1 - \epsilon$. In other words, you are to show that a positive rv must take on some range of of positive values with positive probability.

Solution: For any $\epsilon < 1$, we can look at the sequence of events $\{X \ge 1/k; k \ge 1\}$. The union of these events is the event $\{X > 0\}$. Since $\Pr\{X \le 0\} = 0$, $\Pr\{X > 0\} = 1$. The events $\{X \ge 1/k\}$ are nested in k, so that, from (??),

$$1 = \Pr \bigcup_{k} \{X \ge 1/k\} = \lim_{k \to \infty} \Pr\{X \ge 1/k\}$$

Thus, for k large enough, $\Pr\{X \ge 1/k\} \ge 1 - \epsilon$. Taking δ to be 1/k for that value of k completes the demonstration.

b) Show that $\Pr\{S_n \leq \delta\} \leq (1 - \epsilon)^n$.

Solution: S_n is the sum of n interarrival times, and, bounding very loosely, $S_n \leq \delta$ implies that for each $i, 1 \leq i \leq n, X_i \leq \delta$. The X_i are independent, so, since $\Pr X_i \leq \delta \leq (1-\epsilon)$, we have $\Pr\{S_n \leq \delta\} \leq (1-\epsilon)^n$.

c) Show that $\mathbb{E}[N(\delta)] \leq 1/\epsilon$.

Solution: Since N(t) is nonnegative,

$$\mathbb{E}[N(\delta)] = \sum_{n=1}^{\infty} \Pr\{N(\delta) \ge n\}$$
$$= \sum_{n=1}^{\infty} \Pr\{S_n \le \delta\}$$
$$\le \sum_{n=1}^{\infty} (1-\epsilon)^n$$
$$= \frac{1-\epsilon}{1-(1-\epsilon)} = \frac{1-\epsilon}{\epsilon} \le \frac{1}{\epsilon}$$

d) Show that for every integer k, $\mathbb{E}[N(k\delta)] \leq k/\epsilon$ and thus that $\mathbb{E}[N(t)] \leq \frac{t+\delta}{\epsilon\delta}$ for any t > 0. Solution: The solution of part c) suggests breaking the interval $(0, k\delta]$ into k intervals each of size δ . Letting $N_i = N((i) - N(i-1))$ be the *i*th of these intervals, we have $\mathbb{E}[N(\delta k)] = \sum_{i=1}^k \mathbb{E}[N_i]$. For the first of these intervals, we have shown that $\mathbb{E}[N_1] \leq 1/\epsilon$, but that argument does

For the first of these intervals, we have shown that $\mathbb{E}[N_1] \leq 1/\epsilon$, but that argument does not quite work for the subsequent intervals, since the first arrival in that interval might be at the end of an interarrival interval greater than δ . All the other arrivals in that interval must still be at the end of an interarrival interval at most δ . Thus if let $S_n^{(i)}$ be the number of arrivals in the *i*th interval, we have

$$\Pr\{S_n^{(i)\} \le \delta} \le (1-\epsilon)^{n-1}$$

Repeating the argument in part c), then,

$$\mathbb{E}[N_i] = \sum_{n=1}^{\infty} \Pr\{N_i \ge n\} = \sum_{n=1}^{\infty} \Pr\{S_n^{(i)} \le \delta\}$$

$$\le \sum_{n=1}^{\infty} (1-\epsilon)^{n-1} = \frac{1}{1-(1-\epsilon)} = \frac{1}{\epsilon}$$

Since $\mathbb{E}[N(\delta k)] = \sum_{i=1}^{k} \mathbb{E}[N_i]$, we then have

$$\mathbb{E}[N(k\delta)] \le k/\epsilon$$

Since N(t) is non-decreasing in t, it can be upper bounded by the integer multiple of $1/\delta$ that is just larger than t, i.e.,

$$\mathbb{E}[N(t)] \leq \mathbb{E}[N(\delta \lceil t/\delta \rceil)] \leq \frac{\lceil t/\delta \rceil}{\epsilon} \leq \frac{t/\delta + 1}{\epsilon}$$

e) Use your result here to show that N(t) is non-defective.

Solution: Since N(t), for each t, is non-negative and has finite expectation, it certainly must be non-defective. One way to see this is that $\mathbb{E}[N(t)]$ is the integral of the complementary distribution function, $\mathsf{F}_{N(t)}^{\mathsf{c}}(n)$ of N(t). Since this integral is finite, $\mathsf{F}_{N(t)}^{\mathsf{c}}(n)$ must approach 0 with increasing n.

3) Exercise 4.4 in text

Is it true for a renewal process that:

a) N(t) < n if and only if $S_n > t$?

b) $N(t) \leq n$ if and only if $S_n \geq t$?

c) N(t) > n if and only if $S_n < t$?

Solution: Part a) is true, as pointed out in (4.1). It is simply the complement of the statement that $N(t) \ge n$ if and only if $S_n \le t$.

Parts b) and c) are false, as seen by any situation where $S_n < t$ and $S_{n+1} > t$. In these cases, N(t) = n.

4) Exercise 4.5 in text

(This shows that convergence WP1 implies convergence in probability.) Let $\{Y_n; n \ge 1\}$ be a sequence of rv's that converges to 0 WP1. For any positive integers m and k, let

$$A(m,k) = \{ \omega : |Y_n(\omega)| \le 1/k \text{ for all } n \ge m \}.$$

a) Show that if $\lim_{n\to\infty} Y_n(\omega) = 0$ for some given ω , then (for any given k) $\omega \in A(m, k)$ for some positive integer m.

Solution: Note that for a given ω , $\{Y_n(\omega); n \ge 1\}$ is simply a sequence of real numbers. Thus by the definition of convergence of a sequence of real numbers, if $\lim_{n\to\infty} Y_n(\omega) = 0$ then for every integer $k \ge 1$, there is an m such that $|Y_n(\omega)| \le 1/k$ for all $n \ge m$. Thus the given ω must be in the set A(m, k) for that k.

b) Show that for all $k \ge 1$

$$\Pr \bigcup_{m=1}^{\infty} A(m,k) = 1.$$

Solution: We saw in a) that, given $k \ge 1$ and given $\lim_{n\to\infty} Y_n(\omega) = 0$, there is some $m \ge 1$ such that $\omega \in A(m,k)$. Thus given $\lim_{n\to\infty} Y_n(\omega) = 0$, $\omega \in \bigcup_m A(m,k)$

c) Show that, for all $m \ge 1$, $A(m,k) \subseteq A(m+1,k)$. Use this (plus (1.9) to show that

$$\lim_{m \to \infty} \Pr{A(m,k)} = 1.$$

Solution: If $\omega \in A(m,k)$, then $|Y_n(\omega)| \leq 1/k$ for all $n \geq m$ and thus for all $n \geq m+1$. Thus $\omega \in A(m,k)$ implies that $\omega \in A(m+1,k)$. This means that $A(m,k) \subseteq A(m+1,k)$. From (1.9) then

$$1 = \Pr \bigcup_{m} A(m,k) = \lim_{m \to \infty} \Pr A(m,k)$$

d) Show that if $\omega \in A(m,k)$, then $|Y_m(\omega)| \leq 1/k$. Use this (plus part c) to show that

$$\lim_{m \to \infty} \Pr|Y_m| > 1/k = 0$$

Solution: By the definition of A(m,k), $\omega \in A(m,k)$ means that $|Y_n(\omega)| \leq 1/k$ for all $n \geq m$, and thus certainly $|Y_m(\omega)| \leq 1/k$. Since $\lim_{m\to\infty} \Pr A(m,k) = 1$, it follows that

$$\lim_{m \to \infty} |Y_m(\omega)| \le 1/k$$

Since $k \ge 1$ is arbitrary, this shows that $\{Y_n; n \ge 1\}$ converges in probability.

5) Exercise 4.8 in text:

a) Since $\mathbb{E}[X] = \int_0^\infty \mathrm{d} F_X^c(x) \, dx = \infty$, we know from the definition of an integral over an infinite limit that

$$\mathbb{E}[X] = \lim_{b \to \infty} \int_0^b \mathrm{d}F_X^c(x) \, dx = \infty$$

For $\check{X} = \min(X, b)$, we see that $dF_{\check{X}}(x) = dF_X(x)$ for $x \leq b$ and $dF_{\check{X}}(x) = 1$ for x > b. Thus $\mathbb{E}[\check{X}] = \int_0^b dF_X^c(x) dx$. Since $\mathbb{E}[\check{X}]$ is increasing with b toward ∞ , we see that for any M > 0, there is a b sufficiently large that $\mathbb{E}[\check{X}] \geq M$.

b) Note that $X - \check{X}$ is a non-negative rv, i.e., it is 0 for $X \leq b$ and greater than b otherwise. Thus $\check{X} \leq X$. It follows then that for all $n \geq 1$,

$$\breve{S}_n = \breve{X}_1 + \breve{X}_2 + \cdots \breve{X}_n \le X_1 + X_2 + \cdots + X_n = S_n$$

Since $\check{S}_n \leq S_n$, it follows for all t > 0 that if $S_n \leq t$ then also $\check{S}_n \leq t$. This then means that if $N(t) \geq n$, then also $\check{N}(t) \geq n$. Since this is true for all n, $\check{N}(t) \geq N(t)$, i.e., the reduction of inter-renewal intervals causes an increase in the number of renewals.

c) Let M and $b < \infty$ such that $\mathbb{E}[X] \ge M$ be fixed in what follows. Since $X \le b$, we see that $\mathbb{E}[X] < \infty$, so we can apply Theorem 4.3.1, which asserts that

$$\Pr \omega : \lim_{t \to \infty} \frac{\check{N}(t, \omega)}{t} = \frac{1}{\mathbb{E}[\check{X}]} = 1$$

Let A denote the set of sample points above for which the above limit exists, i.e., for which $\lim_{t\to\infty} \check{N}(t,\omega)/t = 1/\mathbb{E}[\check{X}]$. We will show that, for each $\omega \in A$, $\lim_t N(t,\omega)/t \leq 1/2M$. We know that any for $\omega \in A$, $\lim_t \check{N}(t,\omega)/t = 1/\mathbb{E}[\check{X}]$. The definition of the limit of a real valued function states that for any $\epsilon > 0$, there is a $\tau(\epsilon)$ such that

$$\left|\frac{\breve{N}(t,\omega)}{t} - \frac{1}{\mathbb{E}[\breve{X}]}\right| \leq \epsilon \quad \text{for all } t \geq \tau(\epsilon)$$

Note that $\tau(\epsilon)$ depends on b and ω as well as ϵ , so we denote it as $\tau(\epsilon, b, \omega)$. Using only one side of this inequality, $N(t, \omega)/t \leq \epsilon + 1/\mathbb{E}[\check{X}]$ for all $t \geq \tau(\epsilon, b, \omega)$. Since we have seen that $N(t, \omega) \leq \check{N}(t, \omega)$ and $\check{X} \leq M$, we have

$$\frac{N(t,\omega)}{t} \leq \epsilon + \frac{1}{M} \qquad \text{for all } t \geq \tau(\epsilon,b,\omega)$$

Since ϵ is arbitrary, we can choose it as 1/M, giving the desired inequality for all $\omega \in A$. Now for each choice of integer M, let A(M) be the set of probability 1 above. The intersection of these sets also has probability 1, and each ω in all of these sets have $\lim_t N(t,\omega)/t = 0$. If you did this correctly, you should surely be proud of yourself!!!

Exercise 6:

a) In order to find $\mathbb{E}[N_s(t)]$, we need to use the iterative expectation formula and find $\mathbb{E}[N_s(t)|X_0 = j]$ first.

$$\mathbb{E}[N_s(t)] = \mathbb{E}_{X_0}[\mathbb{E}[N_s(t)|X_0 = j]]$$

$$= \sum_{j=1}^M \Pr\{X_0 = j\}\mathbb{E}[N_s(t)|X_0 = j]$$

$$= \sum_{j=1}^M \pi_j\mathbb{E}[N_s(t)|X_0 = j]$$

Knowing the first initial state, we can find the expected reward up to time t:

$$\mathbb{E}[N_s(t)|X_0=j] = r_j + \sum_{i=1}^M P_{ji}r_i + \sum_{i=1}^M P_{ji}^2r_i + \dots + \sum_{i=1}^M P_{ji}^{t-1}r_i$$

Assuming that $\mathbb{E}[N_s(t)|X_0]$ is a vector in which the *j*-th element is $\mathbb{E}[N_s(t)|X_0 = j]$, we can write:

$$\mathbb{E}[N_s(t)|X_0] = \vec{r} + [P]\vec{r} + [P]^2\vec{r} + \dots + [P]^{t-1}\vec{r}$$

$$\mathbb{E}[N_s(t)] = \sum_{j=1}^M \pi_j \mathbb{E}[N_s(t)|X_0 = j] \\ = \vec{\pi} \mathbb{E}[N_s(t)|X_0] \\ = \vec{\pi} \left(\vec{r} + [P]\vec{r} + [P]^2\vec{r} + \dots + [P]^{t-1}\vec{r}\right) \\ = \vec{\pi}\vec{r} + \vec{\pi}[P]\vec{r} + \vec{\pi}[P]^2\vec{r} + \dots + \vec{\pi}[P]^{t-1}\vec{r} \\ = t\vec{\pi}\vec{r}$$

The last equation is due to the fact that π is the steady state probability vector of the Markov chain and thus it is a left eigenvector of [P] with eigenvalue $\lambda = 1$. Thus, $\vec{\pi}[P]^k = \vec{\pi}$.

Choosing the rewards as described in the problem where $r_1 = 1$ and for $j = \{2, \dots, M\}$ $r_j = 0$, we get: $\mathbb{E}[N_s(t)] = \pi_1 t$.

From the previous part, we would know that $\lim_{t\to\infty} \mathbb{E}[N_s(t)]/t = \lim_{t\to\infty} \pi_1 t/t = \pi_1$.

The difference between $N_s(t)$ and $N_1(t)$ is that the first process starts in steady state and the second starts in state 1. The second is a bona-fide renewal counting process and the first is what is called a delayed renewal counting process. After the first occurrence of state 1, in $N_s(t)$, the intervals between successive occurrences of state 1 are IID and the same as with $N_1(t)$. Thus the time to the *n*th renewal (starting in steady state) is $S_n = Y_1 + X_2 + X_3 + \cdots + X_n$ where $X_2, \cdots + X_n$ are IID and Y_1 is another rv. It is not hard to believe (Section 4.8 of the text makes it precise) that $\lim_n S_n/n = \bar{X}$ WP1 for the process starting in steady state, and $N_s(t)/t$ then converges WP1 to $1/\bar{X}$. From the above analysis of steady state, $\bar{X} = 1/\pi_1$.

b) The strong law for renewals say that if X_i is defined to be the *i*-th interarrival time of going from state 1 to itself, then with probability 1, $\lim_{t\to\infty} N_1(t)/t = 1/\bar{X}$. Thus, the expectation of the interarrival times of recurrence of state 1 is $1/\pi_1$

6.262 Discrete Stochastic Processes Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.