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Exercise 1 

Let {Yn; n ≥ 1} be a sequence of rv’s and assume that limn→∞ E[|Yn|] = 0. Show that 
{Yn; n ≥ 1} converges to 0 in probability. Hint 1: Look for the easy way. Hint 2: The easy 
way uses the Markov inequality. 

Solution: Applying the Markov inequality to |Yn| for arbitrary n and arbitrary � > 0, 
we have 

E[
Pr Yn  �

|Y
 n|] {| | ≥ } ≤

� 

Thus going to the limit n →∞ for the given �, 

lim Pr{|Yn ≥ �} = 0. 
n→∞ 

| 

Since this is true for every � > 0, this satisfies the definition for convergence to 0 in 
probability. 

Exercise 2 (4.2 in text) 

The purpose of this exercise is to show that, for an arbitrary renewal process, N(t), the 
number of renewals in (0, t], has finite expectation. 

a) Let the inter-renewal intervals have the distribution FX (x), with, as usual, FX (0) = 0. 
Using whatever combination of mathematics and common sense is comfortable for you, 
show that numbers � > 0 and δ > 0 must exist such that FX (δ) ≤ 1 − �. In other words, 
you are to show that a positive rv must take on some range of of positive values with 
positive probability. 

Solution: For any � < 1, we can look at the sequence of events {X ≥ 1/k; k ≥ 1}. The 
union of these events is the event {X > 0}. Since Pr{X ≤ 0} = 0, Pr{X > 0} = 1. The 
events {X ≥ 1/k} are nested in k, so that, from (??), 

 
1 = Pr 



{X ≥ 1/k} = lim Pr{X ≥ 1/k

k→∞ 
}

k

Thus, for k large enough, Pr{X ≥ 1/k} ≥ 1 − �. Taking δ to be 1/k for that value of k 
completes the demonstration. 

b) Show that Pr{Sn ≤ δ} ≤ (1 − �)n . 
Solution: Sn is the sum of n interarrival times, and, bounding very loosely, Sn ≤ δ 

implies that for each i, 1 ≤ i ≤ n, Xi ≤ δ. The Xi are independent, so, since Pr Xi ≤ δ ≤
(1 − �), we have Pr{Sn ≤ δ} ≤ (1 − �)n . 

c) Show that E[N(δ)] ≤ 1/�. 
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Solution: Since N(t) is nonnegative, �∞  
E[N(δ)] = Pr

n=1 

{N(δ) ≥ n}

∞  
= 

n

�
Pr{Sn ≤ δ

=1 

}

�∞  
≤ (1 − )n �

n=1 

1− � 1 
= = 

− � 1 
1 − (1− �) �

≤ 
� 

d) Show that for every integer k, E[N(kδ)] ≤ k/� and thus that E[N(t)] ≤ t+δ 
�δ any  for 

t > 0. Solution: The solution of part c) suggests breaking the interval (0, kδ] into k 
intervals each of size�  δ. Letting Ni = N((i) − N(i − 1) be the ith of these intervals, we 
have E[  N(δk)] = k

i=1 E[Ni]. 
For the first of these intervals, we have shown that E[N1] ≤ 1/�, but that argument does 

not quite work for the subsequent intervals, since the first arrival in that interval might be 
at the end of an interarrival interval greater than δ. All the other arrivals in that interval 
must still be   at the end of an interarrival interval at most δ. Thus if let (i)

Sn be the number 
of arrivals in the ith interval, we have 

Pr{  S(i)
n 
}≤δ ≤ (1 − �)n−1

Repeating the argument in part c), then, 
∞  ∞  

E[Ni] = 
�

Pr n 
 

{Ni ≥ n} = Pr S(i)  δ
n=1 n
∞  

�
=1 

{ ≤ }

� 1 1 ≤ (1 − �)n−1 = = 
1 − (1 � n

− �) � 
=1 

Since E[N(δk)] = k 
i=1 E[Ni], we then have 

E[N(kδ)] ≤ k/� 

Since N(t) is non-decreasing in t, it can be upper bounded by the integer multiple of 1/δ 
that is just larger than t, i.e., 

�t/δ�) t/δ + 1 
E[N(t)] ≤ E[N(δ�t/δ�)] ≤

� 
≤ 

� 
e) Use your result here to show that N(t) is non-defective. 
Solution: Since N(t), for each t, is non-negative and has finite expectation, it certainly 

must be non-defective. One way to see this is that E[N(t)] is the integral of the comple
mentary distribution function, Fc (n) of N(t). Since this integral is finite, Fc (n) must N(t) N(t)

approach 0 with increasing n. 
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3) Exercise 4.4 in text 

Is it true for a renewal process that: 
a) N(t) < n if and only if Sn > t? 
b) N(t) ≤ n if and only if Sn ≥ t? 
c) N(t) > n if and only if Sn < t? 
Solution: Part a) is true, as pointed out in (4.1). It is simply the complement of the 

statement that N(t) ≥ n if and only if Sn ≤ t. 
Parts b) and c) are false, as seen by any situation where Sn < t and Sn+1 > t. In these 

cases, N(t) = n. 

4) Exercise 4.5 in text 

(This shows that convergence WP1 implies convergence in probability.) Let {Yn; n ≥ 1}
be a sequence of rv’s that converges to 0 WP1. For any positive integers m and k, let 

A(m, k) = {ω : |Yn(ω)| ≤ 1/k for all n ≥ m}. 

a) Show that if limn  Yn(ω) = 0 for some given ω, then (for any given k) ω  A(m, k) →∞ ∈
for some positive integer m. 

Solution: Note that for a given ω, {Yn(ω); n ≥ 1} is simply a sequence of real numbers. 
Thus by the definition of convergence of a sequence of real numbers, if limn  Y (→∞ n ω) = 0 
then for every integer k ≥ 1, there is an m such that |Yn(ω)| ≤ 1/k for all n ≥ m. Thus 
the given ω must be in the set A(m, k) for that k. 

b) Show that for all k ≥ 1 

Pr 

∞ 

A(m, k) = 1. 
m=1 

Solution: We saw in a) that, given k ≥ 1 and given limn→∞ Yn(ω) = 0, there is some  
m ≥ 1 such that ω ∈ A(m, k). Thus given limn  Yn(ω) = 0, ω ∈ 

�
m A(m, k)→∞

c) Show that, for all m ≥ 1, A(m, k) ⊆ A(m+1, k). Use this (plus (1.9) to show that 

lim Pr A(m, k) = 1. 
m→∞ 

Solution: If ω ∈ A(m, k), then |Yn(ω)| ≤ 1/k for all n ≥ m and thus for all n ≥ m + 1. 
Thus ω ∈ A(m, k) implies that ω ∈ A(m + 1, k). This means that A(m, k) ⊆ A(m + 1, k). 
From (1.9) then 
 

1 = Pr A(m, k) = lim Pr A(m, k) 
m

m
→∞ 

d) Show that if ω ∈ A(m, k), then |Ym(ω)| ≤ 1/k. Use this (plus part c) to show that 

lim Pr |Ym| > 1/k = 0. 
m→∞ 

Solution: By the definition of A(m, k), ω ∈ A(m, k) means that |Yn(ω)| ≤ 1/k for all 
n ≥ m, and thus certainly |Ym(ω)| ≤ 1/k. Since limm  Pr A(m, k) = 1, it follows that →∞

lim Ym(ω)  ≤ /k 
m→∞ 

| | 1
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Since k ≥ 1 is arbitrary, this shows that {Yn; n ≥ 1} converges in probability. 

5) Exercise 4.8 in text: 



a) Since E[  X] =
 ∞ (x) dx = e know 0 dF cX ∞, w from the definition of an integral over an 

infinite limit that


�
= lim 

� b 

E[ dFX 
c X]  (x) dx = 

b→∞ 0
∞

For X̆ = min(�X, b), we see that dF ˘ (x) = dFX (x) for x ≤ b  ˘ (xX and dF )  X = 1 for x > b.
 

Thus E[ ˘ ] = b dF c X X (x) dx. 0 Since E[X̆] is increasing with b toward ∞, we see that for any 
M > 0, there is a b sufficiently large that E[X̆] ≥ M . 

b) Note that X − X̆ is a non-negative rv, i.e., it is 0 for X ≤ b and greater than b 
otherwise. Thus X̆ ≤ X. It follows then that for all n ≥ 1, 

S̆n = X̆1 + X̆2 + X̆· · · n ≤ X1 + X2 + · · · Xn = Sn

Since S̆n ≤ Sn, it follows for all t > 0 that if Sn ≤ t then also S̆n ≤ t. This then means 
that if N(t) ≥ n, then also N̆(t) ≥ n. Since this is true for all n, N̆(t) ≥ N(t), i.e., the 
reduction of inter-renewal intervals causes an increase in the number of renewals. 

c) Let M and b < ∞ such that E[X̆] ≥ M be fixed in what follows. Since X̆ ≤ b, we see 
that E[X̆] < ∞, so we can apply Theorem 4.3.1, which asserts that 

N̆(t, ω) 1
Pr ω : lim = = 1 

t  t E[X̆→∞ ] 

Let A denote the set of sample points above for which the above limit exists, i.e., for which 
lim N̆t  (t, ω)/t = 1/E[X̆]. We will show that, for each ω ∈ A, limt N(t, ω)/t ≤ 1/2M . →∞
We know that any for ω im ˘∈ A, l t N(t, ω)/t = 1/E[X̆]. The definition of the limit of a real 
valued function states that for any � > 0, there is a that �� τ (�) such 

N̆�� (t, ω) 1
� −  � for all t  τ (�)


 t
 E[X̆]


��


≤ ≥

Note that τ(�) depends on b and ω as 

���
well as �, so we denote it as τ (�, b, ω). Using only 

one side of this inequality, N(t, ω)/t ≤ � + 1/E[X̆] for all t 
˘ ˘

≥ τ(�, b, ω). Since we have seen 
that N(t, ω) ≤ N(t, ω) and X ≤ M , we have 

N(t, ω) 1 ≤ � + for all t ≥ τ(�, b, ω)
t M 

Since � is arbitrary, we can choose it as 1/M , giving the desired inequality for all ω ∈ A. 
Now for each choice of integer M , let A(M) be the set of probability 1 above. The 
intersection of these sets also has probability 1, and each ω in all of these sets have 
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limt N(t, ω)/t) = 0. If you did this correctly, you should surely be proud of yourself!!! 

Exercise 6: 

a) In order to find E[Ns(t)], we need to use the iterative expectation formula and find 
E[Ns(t)|X0 = j] first. 

E[Ns(t)] = EX0 [E[Ns(t)|X0 = j]] 
M  

= 
�

Pr{X0 = j}E[Ns(t)|X0 = j] 
j=1 

 
= 

�M
πj E[Ns(t) X0 = j] 

j=1 

|

Knowing the first initial state, we can find the expected reward up to time t: �M  �M  M  
E[N (t)|X = j] = r + P r + P 2 r + · · · +

�
P t 1

s 0 j ji i ji i ji
−
 ri

i=1 i=1 i=1 

Assuming that E[Ns(t)|X0] is a vector in which the j-th element is E[Ns(t)|X0 = j], we 
can write: 

E[N (t)|X ] = �r + [P ]�r + [P ]2�r + · · · + [P ]t−1
s 0 �r

M

 
� 

E[Ns(t)] = πj E[Ns(t)|X0 = j] 
j=1 

= �πE�[Ns(t) X
 

|
 0]



= �π �r 
+ [P ]�r + [P ]2�r + · · · + [P ]t−1�r

= �π�r + �π[P ]�r + �π[P ]2�r + · · · + �π[P ]t−

�
1�r

= t�π�r 

The last equation is due to the fact that π is the steady state probability vector of 
the Markov chain and thus it is a left eigenvector of [P ] with eigenvalue λ = 1. Thus, 
[  ]k �π P = �π. 
Choosing the rewards as described in the problem where r1 = 1 and for j = {2, · · · M}

rj = 0, we get: E[Ns(t)] = π1t. 
From the previous part, we would know that limt  E[N→∞ s(t)]/t = limt→∞ π1t/t = π1. 
The difference between Ns(t) and N1(t) is that the first process starts in steady state 

and the second starts in state 1. The second is a bona-fide renewal counting process and 
the first is what is called a delayed renewal counting process. After the first occurrence 
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of state 1, in Ns(t), the intervals between successive occurrences of state 1 are IID and 
the same as with N1(t). Thus the time to the nth renewal (starting in steady state) is 
Sn = Y1 + X2 + X3 + · · · Xn where X2, · · · Xn are IID and Y1 is another rv. It is not hard to 
believe (Section 4.8 of the text makes it precise) that limn Sn/n = X̄  WP1 for the process 
starting in steady state, and Ns(t)/t then converges WP1 to 1/X̄. From the above analysis 
of steady state, X̄  = 1/π1. 

b) The strong law for renewals say that if Xi is defined to be the i-th interarrival time 
of going from state 1 to itself, then with probability 1, limt  N1(t)/t = 1/X̄. Thus, the →∞
expectation of the interarrival times of recurrence of state 1 is 1/π1 
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