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Exercise 4.7 Given a complex square matrix A, the definition of the structured singular value 
function is as follows. 

1 
µΔ(A) = 

minΔ Δ{σmax(Δ) 0∈ | det(I − ΔA) = } 

where Δ is some set of matrices. 
a) If Δ = {αI : α ∈ C}, then det(I − ΔA) = det(I − αA). Here det(I − αA) = 0 implies that 
there exists an x = 0 such that (I − αA)x = 0. Expanding the left hand side of the equation yields 
x = αAx → 1	 1 x = Ax. Therefore is an eigenvalue of A. Since σ (Δ) =  |α|,α	 maxα

1 
arg min{ σmax(Δ)|	det(I − ΔA) = 0} = |α| = . 

δ∈Δ
|
λmax(A)

|

Therefore, µΔ(A) = |λmax(A)|. 

b) If Δ = {Δ ∈ Cn×n}, then following a similar argument as in a), there exists an x = 0 such that 
(I − ΔA)x = 0. That implies that 

x = ΔAx →	 �x�2 = �ΔAx�2 ≤ �Δ�2�Ax�2 

1 →	
�Ax�≤ 2 ≤ σmax(A)�Δ�2 �x�2 

1 →  σmax(Δ). 
σmax(A) 

≤

Then, we show that the lower bound can be achieved. Since Δ = {Δ ∈ Cn×n}, we can choose Δ 
such that ⎛
 1 

Δ =
⎜ σ

⎞

max(A) ⎜ 0

 V


 . . . 

0 

⎟⎟⎜ ⎟U �.



where U and V are from the SVD of A

⎝
, A = UΣV �. Note that

⎠
 this choice results in ⎛ 

1	 0
⎜⎜ 0

I − ΔA = I − V
 .

 .


⎞ ⎛ ⎞
.


0

⎟⎟⎟ 
⎜  V � = V
 




⎜⎜⎜ 1
.
 V


 .
.


⎟⎟⎟



1 

 which is singular, as required. Also

⎝
 from the construction

⎠
 of

⎝
 Δ, σmax(Δ) =

⎠
 1 . Therefore,σmax(A) 

µΔ(A) = σmax(A). 

1 

�

�



c) If Δ = {diag(α1, · · · , αn)|αi ∈ C} with D ∈ {diag(d1, · · · , dn)|di > 0}, we first note that D−1 

exists. Thus: 

det(I − ΔD−1AD) = det(I − D−1ΔAD) 

= det((D−1 − D−1ΔA)D) 

= det(D−1 − D−1ΔA)det(D) 

= det(D−1(I − ΔA))det(D) 

= det(D−1)det(I − ΔA)det(D) 

= det(I − ΔA). 

Where the first equality follows because Δ and D−1 are diagonal and the last equality holds because 
det(D−1) = 1/det(D). Thus, µΔ(A) = µΔ(D

−1AD). 

Now let’s show the left side inequality first. Since Δ1 ⊂ Δ2 , Δ1 = {αI|α ∈ C} and Δ2 = 
{diag(α1, , αn)}, we have that · · · 

min {σmax(Δ)| det(I − ΔA) = 0} ≥ min {σmax(Δ)|det(I − ΔA) = 0}, 
Δ∈Δ1 Δ∈Δ2

which implies that 

µΔ1 
(A) ≤ µΔ2 

(A). 

But from part (a), µΔ1 
(A) = ρ(A), so, 

ρ(A) ≤ µΔ2 
(A). 

Now we have to show the right side of inequality. Note that with Δ3 = {Δ ∈ C}, we have Δ2 ⊂ Δ3. 
Thus by following a similar argument as above, we have 

min (Δ) det(I − ΔA) = 0} ≥ min (Δ) det(I − ΔA) = 0}. 
Δ∈Δ2

{σmax | 
Δ∈Δ3

{σmax | 

Hence, 

µΔ2 
(A) = µΔ2 

(D−1AD) ≤ µΔ3 
(D−1AD) = σmax(D

−1AD). 

Exercise 4.8 We are given a complex square matrix A with rank(A) = 1. According to the SVD 
of A we can write A = uv� where u, v are complex vectors of dimension n. To simplify computations 
we are asked to minimize the Frobenius norm of Δ in the definition of µΔ(A). So 

1 
µΔ(A) = 

minΔ∈Δ{ �Δ�F | det(I − ΔA) = 0} 

Δ is the set of diagonal matrices with complex entries, Δ = {diag(δ1, , δn)|δi ∈ C}. Introduce · · · 
the column vector δ = (δ1, , δn)

T and the row vector B = (u1v1
∗, , unvn

∗), then the original · · · · · · 
problem can be reformulated after some algebraic manipulations as 

1 
µΔ(A) = 

minδ∈Cn { �δ�2 | Bδ = 1} 
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To see this, we use the fact that A = uv�, and (from excercise 1.3(a)) 

det(I − ΔA) = det(I − Δuv�) 

= det(1 − v�Δu) 

= 1 − v�Δu 

Thus det(I − ΔA) = 0 implies that 1 − v�Δu = 0. Then we have 

1 = v�Δu  � δ  u    1 1

 ∗ · · ·
 ∗ 

⎛
.vn

⎞�⎜ 
.
 ⎝
 .
 ⎠ .
= v1 
⎟




⎛⎜⎝
 .
.


⎞
n 


 

δ

  1

⎠⎟


δn u

= 
�  

 v1
∗ .u1 · · ·  vn

∗un

⎛ ⎞�
= Bδ 

⎝⎜
 .
. ⎠⎟


δn 

Hence, computing µΔ(A) reduces to a least square problem, i.e., 

min {�Δ�F | det(I − ΔA) = 0} 2 s.t. 1 = Bδ. 
Δ∈Δ

⇔ min �δ�

We are dealing with a underdetermined system of equations and we are seeking a minimum norm 
solution. Using the   δo projection theorem, the optimal δ is given from = B�(BB�  )−1. Substituting 
in the expression of the structured singular value function we obtain: 

����n  
 µ  


Δ(A) = |u
 ivi
∗ 2
 

i=1 

|


In the second part of this exercise we define Δ to

�
 be the set of diagonal matrices with real entries,


Δ = {diag(δ1, · · · , δn)|δi ∈ R}. The idea remains the same, we just have to alter    the constrain t
Re(B)

equation, namely Bδ = 1+0j. Equivalently one can write Dδ = d where D =


�
and d =
� � Im(B)

 


1 

�
  . Again the optimal δ is obtained by use of the projection theorem and δo = D�(DDT )−1d. 

0 
Substituting in the expression of the structured singular value function we obtain: 

1 
µΔ(A) = �


dT (DDT )−1d 

 Exercise 5.1 Suppose that A ∈ Cm×n is perturbed by  the matrix E ∈ Cm×n. 

1. Show that 

|σmax(A + E) − σmax(A)| ≤ σmax(E). 
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Also find an E that achieves the upper bound. 

Note that 

A = A + E − E → �A� = �A + E − E� ≤ �A + E� + �E� → �A� − �A + E� ≤ �E�. 

Also, 

(A + E) = A + E → �A + E� ≤ �A� + �E� → �A + E� − �A� ≤ �E�. 

Thus, putting the two inequalities above together, we get that 

|�A + E� − �A�| ≤ �E�. 

Note that the norm can be any matrix norm, thus the above inequality holds for the 2-induced 
norms which gives us, 

|σmax(A + E) − σmax(A)| ≤ σmax(E). 

A matrix E that achieves the upper bound is 

 
−σ1 0 0 0 

. 
0 . . 0 0 

E  = U


⎛ ⎞⎜⎜⎜⎜ V � = A,
⎝ . . 

 . . . σ . 

⎟⎟⎟⎟



−
− r 

0 0 ... 0 

where U and V form the SVD of A. Here, A + E = 0, 

⎠
thus σmax(A + E) = 0, and


|0 + σmax(A)| = σmax(E)


is achieved. 

2. Suppose that	A has less than full column rank, i.e., the rank(A) < n, but A + E has full 
column rank. Show that 

σmin(A + E) ≤ σmax(E).


Since A does not have full column rank, there exists x = 0 such that


(A + E)x 2 Ex 2 
Ax = 0	→ (A+E)x = Ex → �(A+E)x

� �
= 

� ��2	= �Ex�2 → E 2 = σ (E)
�x�2 � max .

x 2 
≤ � �

�

But,

�(A + E)x

σmin(A + E) 
�≤ 2 

,

�x�2
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as shown in chapter 4 (please refer to the proof in the lecture notes!). Thus 

σmin(A + E) ≤ σmax(E). 

Finally, a matrix E that results in A +E having full column rank and that achieves the upper 
bound is ⎞⎛ 

0 0 0 0 
. 

0 . . 0 0 
. . . . . 0 σr+1 . 
0 0 0 σr+1 

0 

E = U


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


V �, 

for
 ⎞⎛ 
σ1 0 0 0 

. 
0 . . 0 0 
. . 

⎜⎜⎜⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎟⎠


. . . 0 σr V �.A = U
 .


0


Note that A has rank r < n, but that A + E has rank n,


⎞⎛ 

A + E = U


⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝


σ1 0 0 0 0 
. 

0 . . 0 0 0 
0 0 σr 0 0 
0 0 0 σr+1 0 
0 0 0 ... σr+1 

0 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠


V �. 

It is easy to see that σmin(A + E) = σr+1, and that σmax(E) = σr+1. 

The result in part 2, and some extensions to it, give rise to the following procedure (which 
is widely used in practice) for estimating the rank of an unknown matrix A from a known 
matrix A + E, where �E�2 is known as well. Essentially, the SVD of A + E is computed, and 
the rank of A is then estimated to be the number of singular values of A + E that are larger 
than �E�2. 
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Exercise 5.2 Using SVD, A can be decomposed as
⎛ 
σ

⎜⎜⎜
1 

. . .
A = U




⎞
⎟⎝ σ

⎟⎟V �, 

k 

0 

where U and V are unitary matrices and k ≥ r + 1. Following

⎠
 the given procedure, let’s select the 

first r+1 columns of V : {v1, v2, · · · , vr+1}. Since V is unitary, those vi’s are orthonormal and hence 
independent. Note that {v1, v2, · · · , vr+1, · · · vn} span Rn, and if rank(E) = r, then exactly r of 
the vectors, {v1, v2, · · · , vr+1, · · · vn}, span R(E�) = N ⊥(E). The remaining vectors span 

 
N (E).

So, given any r + 1 linearly independent vectors in Rn, at least one must be in the nullspace of E. 
That is there exists coefficients ci for i = 1, · · · , r + 1, not all zero, such that 

E(c1v1 + c2v2 + · · · cr+1vr+1) = 0.

These coefficients can be normalized to obtain a nonzero vector z, �z�⎛ 2 = 1, given by 
 �r+1 � � ⎜ α1 

.
z = αivi = v1 · · · vr+1 ⎝
 .
.

=1 

⎞
i

+1 

⎟
 

αr

and such that Ez = 0. Thus, 

⎠

 

⎛  
σ1α1 ⎛ σ2α2 

−   . ⎜ v  

⎞
1
�

.
− 


(A  E)z = Az = UΣ
 
 .  


⎜⎜
−

⎞� ⎜⎟ � .
r+1 
� ⎜⎜ .
⎝ ⎠ αivi = U ⎜⎜⎜ σ. r+1αr+1 

⎟⎟
(1)


− � v i=1 0

r+1  

⎟⎟
− ⎜ . 
 . 

⎟
. 

⎟⎟⎜
 

⎟⎟⎟



0

By taking 2-norm of both sides of the above equation,


⎝ ⎠

⎛ 
σ1α1 

σ2α2 
.
.


⎞ ⎛
σ1α1 

σ2α2 
.



⎞
.
 ..


�(A 

⎜ ⎜
− E)z�2 = �U 

⎜⎜⎜
σ

⎜⎜
r+1αr+1 

⎟⎟ ⎟
0


⎟⎟⎟
�2 = � 

⎜⎜⎜ ⎟ ⎜⎜⎜ ⎟⎟ ⎜⎜⎜ σr+1αr+1 

0

⎟⎟
� a






⎟⎟
2 ( since U is  unitary matrix)
⎜

.
 .

 . .
.
 


⎟⎟ ⎟⎟⎜



⎟⎝ .
 


0 0
��
r
⎝⎜


1

⎟
 2

⎠
 

⎜

1 

 2

⎠⎟
+1 r+1  

  = |σiα 2
i  σ α 2

r+1 i . (2) 
i=1 

|

�
≥

��
i=1 

| |

�
But, from our construction of z, ⎛ ⎜ α1 α1 r+1 

2 ⎝ .
 .
�z�2 = 1 → �( v1 · · ·
 
 
 .


⎞⎟⎠
�2
  vr+1 ) 
  →  ⎜ .2 ⎝ 
 = 1 �

⎛

 


⎞⎟⎠
�2
  
2 = 

α

�
α 2

. . |
 i|
  = 1. 

r+1 α i=1 
r+1 
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Thus, equation(2) becomes 
�(A − E)z�2 ≥ σr+1. 

Finally, �(A − E)z�2 ≤ �A − E�2 for all z such that �z�2 = 1. Hence 

�A − E�2 ≥ σr+1 

To show that the lower bound can be achieved, choose 

= 

⎛ 
σ

E U


⎞⎜ 1 ⎜ . 
 ⎜⎝ . .
 V �. 


 σ 
r 

0 

⎟⎟⎟
E has rank r,


⎠
⎛ 

0 ⎜⎜ . . .

⎞

 − E = U

⎜  ⎜⎜ 0 
A 


⎟⎟⎟⎟⎜ ⎟
 ⎜⎜ σr+1 ⎜  ⎜ . . 


 σk 

⎟⎟V �.
.

0 

⎟⎟⎟



and �A − E�2 = σr+1. 

⎝ ⎠

Exercise 6.1 The model is linear one needs to note that the integration operator is a linear 
operator. Formally one writes 


 ∞ 

S(αu )
 β (

1 + u  = 
�

e− t−s
2)(t) (αu1(s) + βu2(s))ds 

0 

 α 

� ∞  

= e−(t−s)
∞

u e−(t−s)
1(s) + β 

�
u2(s) 

0 0 

= α(Su1)(t) + β(Su2)(t)


It is non-causal since future inputs are needed in order to determine the current value of y. Formally

one writes  
∞ 

(P Su)(t) = (P SP u)(t) + P (t s)
T T T T 

��
e− − u(s)ds

�



T 

It is not memoryless since the current output depends on the integration of past inputs. It is also 
time varying since 

 0 
 (SσT u)(t) = (σ (t T s)

T Su)(t) + 
�

e− − − u(s)ds 
−T 

one can argue that if the only valid input signals are those where u(t) = 0 if t < 0 then the system 
is time invariant. 
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Exercise 6.4(i) linear , time varying , causal , not memoryless 
(ii) nonlinear (affine, tranlated linear) time varying , causal , not memoryless 
(iii) nonlinear, time invariant , causal, memoryless 
(iv) linear, time varying , causal, not memoryless 
(i),(ii) can be called time invariant under the additional requirement that u(t) = 0 for t < 0 
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