6.241: Dynamic Systems-Spring 2011

Homework 4 Solutions

Exercise 4.7 Given a complex square matrix A, the definition of the structured singular value function is as follows.

$$
\mu_{\underline{\Delta}}(A)=\frac{1}{\min _{\Delta \in \Delta}\left\{\sigma_{\max }(\Delta) \mid \operatorname{det}(I-\Delta A)=0\right\}}
$$

where Δ is some set of matrices.
a) If $\underline{\Delta}=\{\alpha I: \alpha \in \mathbf{C}\}$, then $\operatorname{det}(I-\Delta A)=\operatorname{det}(I-\alpha A)$. Here $\operatorname{det}(I-\alpha A)=0$ implies that there exists an $x \neq 0$ such that $(I-\alpha A) x=0$. Expanding the left hand side of the equation yields $x=\alpha A x \rightarrow \frac{1}{\alpha} x=A x$. Therefore $\frac{1}{\alpha}$ is an eigenvalue of A. Since $\sigma_{\max }(\Delta)=|\alpha|$,

$$
\arg \min _{\delta \in \Delta}\left\{\sigma_{\max }(\Delta) \mid \operatorname{det}(I-\Delta A)=0\right\}=|\alpha|=\left|\frac{1}{\lambda_{\max }(A)}\right|
$$

Therefore, $\mu_{\Delta}(A)=\left|\lambda_{\max }(A)\right|$.
b) If $\underline{\Delta}=\left\{\Delta \in \mathbf{C}^{n \times n}\right\}$, then following a similar argument as in a), there exists an $x \neq 0$ such that $(I-\Delta A) x=0$. That implies that

$$
\begin{aligned}
x=\Delta A x & \rightarrow\|x\|_{2}=\|\Delta A x\|_{2} \leq\|\Delta\|_{2}\|A x\|_{2} \\
& \rightarrow \frac{1}{\|\Delta\|_{2}} \leq \frac{\|A x\|_{2}}{\|x\|_{2}} \leq \sigma_{\max }(A) \\
& \rightarrow \frac{1}{\sigma_{\max }(A)} \leq \sigma_{\max }(\Delta) .
\end{aligned}
$$

Then, we show that the lower bound can be achieved. Since $\Delta=\left\{\Delta \in \mathbf{C}^{n \times n}\right\}$, we can choose Δ such that

$$
\Delta=V\left(\begin{array}{cccc}
\frac{1}{\sigma_{\max }(A)} & & & \\
& 0 & & \\
& & \ddots & \\
& & & 0
\end{array}\right) U^{\prime}
$$

where U and V are from the SVD of $A, A=U \Sigma V^{\prime}$. Note that this choice results in

$$
I-\Delta A=I-V\left(\begin{array}{cccc}
1 & & & \\
& 0 & & \\
& & \ddots & \\
& & & 0
\end{array}\right) V^{\prime}=V\left(\begin{array}{cccc}
0 & & & \\
& 1 & & \\
& & \ddots & \\
& & & 1
\end{array}\right) V
$$

which is singular, as required. Also from the construction of $\Delta, \sigma_{\max }(\Delta)=\frac{1}{\sigma_{\max }(A)}$. Therefore, $\mu_{\Delta}(A)=\sigma_{\max }(A)$.
c) If $\underline{\Delta}=\left\{\operatorname{diag}\left(\alpha_{1}, \cdots, \alpha_{n}\right) \mid \alpha_{i} \in \mathbf{C}\right\}$ with $D \in\left\{\operatorname{diag}\left(d_{1}, \cdots, d_{n}\right) \mid d_{i}>0\right\}$, we first note that D^{-1} exists. Thus:

$$
\begin{aligned}
\operatorname{det}\left(I-\Delta D^{-1} A D\right) & =\operatorname{det}\left(I-D^{-1} \Delta A D\right) \\
& =\operatorname{det}\left(\left(D^{-1}-D^{-1} \Delta A\right) D\right) \\
& =\operatorname{det}\left(D^{-1}-D^{-1} \Delta A\right) \operatorname{det}(D) \\
& =\operatorname{det}\left(D^{-1}(I-\Delta A)\right) \operatorname{det}(D) \\
& =\operatorname{det}\left(D^{-1}\right) \operatorname{det}(I-\Delta A) \operatorname{det}(D) \\
& =\operatorname{det}(I-\Delta A) .
\end{aligned}
$$

Where the first equality follows because Δ and D^{-1} are diagonal and the last equality holds because $\operatorname{det}\left(D^{-1}\right)=1 / \operatorname{det}(D)$. Thus, $\mu_{\Delta}(A)=\mu_{\Delta}\left(D^{-1} A D\right)$.

Now let's show the left side inequality first. Since $\underline{\Delta}_{1} \subset \underline{\Delta}_{2}, \underline{\Delta}_{1}=\{\alpha I \mid \alpha \in \mathbf{C}\}$ and $\underline{\Delta}_{2}=$ $\left\{\operatorname{diag}\left(\alpha_{1}, \cdots, \alpha_{n}\right)\right\}$, we have that

$$
\min _{\Delta \in \underline{\Delta}_{1}}\left\{\sigma_{\max }(\Delta) \mid \operatorname{det}(I-\Delta A)=0\right\} \geq \min _{\Delta \in \underline{\Delta}_{2}}\left\{\sigma_{\max }(\Delta) \mid \operatorname{det}(I-\Delta A)=0\right\}
$$

which implies that

$$
\mu_{\Delta_{1}}(A) \leq \mu_{\Delta_{2}}(A)
$$

But from part (a), $\mu_{\Delta_{1}}(A)=\rho(A)$, so,

$$
\rho(A) \leq \mu_{\underline{\Delta}_{2}}(A)
$$

Now we have to show the right side of inequality. Note that with $\underline{\Delta}_{3}=\{\Delta \in \mathbf{C}\}$, we have $\underline{\Delta}_{2} \subset \underline{\Delta}_{3}$. Thus by following a similar argument as above, we have

$$
\min _{\Delta \in \underline{\Delta}_{2}}\left\{\sigma_{\max }(\Delta) \mid \operatorname{det}(I-\Delta A)=0\right\} \geq \min _{\Delta \in \Delta_{3}}\left\{\sigma_{\max }(\Delta) \mid \operatorname{det}(I-\Delta A)=0\right\}
$$

Hence,

$$
\mu_{\underline{\Delta}_{2}}(A)=\mu_{\underline{\Delta}_{2}}\left(D^{-1} A D\right) \leq \mu_{\underline{\Delta}_{3}}\left(D^{-1} A D\right)=\sigma_{\max }\left(D^{-1} A D\right)
$$

Exercise 4.8 We are given a complex square matrix A with $\operatorname{rank}(A)=1$. According to the SVD of A we can write $A=u v^{\prime}$ where u, v are complex vectors of dimension n. To simplify computations we are asked to minimize the Frobenius norm of Δ in the definition of $\mu_{\Delta}(A)$. So

$$
\mu_{\Delta}(A)=\frac{1}{\min _{\Delta \in \underline{\Delta}}\left\{\|\Delta\|_{F} \mid \operatorname{det}(I-\Delta A)=0\right\}}
$$

$\underline{\Delta}$ is the set of diagonal matrices with complex entries, $\underline{\Delta}=\left\{\operatorname{diag}\left(\delta_{1}, \cdots, \delta_{n}\right) \mid \delta_{i} \in \mathbf{C}\right\}$. Introduce the column vector $\delta=\left(\delta_{1}, \cdots, \delta_{n}\right)^{T}$ and the row vector $B=\left(u_{1} v_{1}^{*}, \cdots, u_{n} v_{n}^{*}\right)$, then the original problem can be reformulated after some algebraic manipulations as

$$
\mu_{\Delta}(A)=\frac{1}{\min _{\delta \in \mathbf{C}^{\mathbf{n}}}\left\{\|\delta\|_{2} \mid B \delta=1\right\}}
$$

To see this, we use the fact that $A=u v^{\prime}$, and (from excercise 1.3(a))

$$
\begin{aligned}
\operatorname{det}(I-\Delta A) & =\operatorname{det}\left(I-\Delta u v^{\prime}\right) \\
& =\operatorname{det}\left(1-v^{\prime} \Delta u\right) \\
& =1-v^{\prime} \Delta u
\end{aligned}
$$

Thus $\operatorname{det}(I-\Delta A)=0$ implies that $1-v^{\prime} \Delta u=0$. Then we have

$$
\begin{aligned}
1 & =v^{\prime} \Delta u \\
& =\left(\begin{array}{lll}
v_{1}^{*} & \cdots & v_{n}^{*}
\end{array}\right)\left(\begin{array}{ccc}
\delta_{1} & \\
& \ddots & \\
& & \delta_{n}
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right) \\
& =\left(\begin{array}{lll}
v_{1}^{*} u_{1} & \cdots & v_{n}^{*} u_{n}
\end{array}\right)\left(\begin{array}{c}
\delta_{1} \\
\vdots \\
\delta_{n}
\end{array}\right) \\
& =B \delta
\end{aligned}
$$

Hence, computing $\mu_{\underline{\Delta}}(A)$ reduces to a least square problem, i.e.,

$$
\min _{\Delta \in \underline{\Delta}}\left\{\|\Delta\|_{F} \mid \operatorname{det}(I-\Delta A)=0\right\} \Leftrightarrow \min \|\underline{\delta}\|_{2} \text { s.t. } 1=\mathrm{B} \delta .
$$

We are dealing with a underdetermined system of equations and we are seeking a minimum norm solution. Using the projection theorem, the optimal δ is given from $\delta^{o}=B^{\prime}\left(B B^{\prime}\right)^{-1}$. Substituting in the expression of the structured singular value function we obtain:

$$
\mu_{\underline{\Delta}}(A)=\sqrt{\sum_{i=1}^{n}\left|u_{i} v_{i}^{*}\right|^{2}}
$$

In the second part of this exercise we define $\underline{\Delta}$ to be the set of diagonal matrices with real entries, $\Delta=\left\{\operatorname{diag}\left(\delta_{1}, \cdots, \delta_{n}\right) \mid \delta_{i} \in \mathbf{R}\right\}$. The idea remains the same, we just have to alter the constraint equation, namely $B \delta=1+0 j$. Equivalently one can write $D \delta=d$ where $D=\binom{\operatorname{Re}(B)}{\operatorname{Im}(B)}$ and $d=$ $\binom{1}{0}$. Again the optimal δ is obtained by use of the projection theorem and $\delta^{o}=D^{\prime}\left(D D^{T}\right)^{-1} d$. Substituting in the expression of the structured singular value function we obtain:

$$
\mu_{\underline{\Delta}}(A)=\frac{1}{\sqrt{d^{T}\left(D D^{T}\right)^{-1} d}}
$$

Exercise 5.1 Suppose that $A \in C^{m \times n}$ is perturbed by the matrix $E \in C^{m \times n}$.

1. Show that

$$
\left|\sigma_{\max }(A+E)-\sigma_{\max }(A)\right| \leq \sigma_{\max }(E)
$$

Also find an E that achieves the upper bound.

Note that

$$
A=A+E-E \rightarrow\|A\|=\|A+E-E\| \leq\|A+E\|+\|E\| \rightarrow\|A\|-\|A+E\| \leq\|E\|
$$

Also,

$$
(A+E)=A+E \rightarrow\|A+E\| \leq\|A\|+\|E\| \rightarrow\|A+E\|-\|A\| \leq\|E\|
$$

Thus, putting the two inequalities above together, we get that

$$
|\|A+E\|-\|A\|| \leq\|E\|
$$

Note that the norm can be any matrix norm, thus the above inequality holds for the 2-induced norms which gives us,

$$
\left|\sigma_{\max }(A+E)-\sigma_{\max }(A)\right| \leq \sigma_{\max }(E)
$$

A matrix E that achieves the upper bound is

$$
E=U\left(\begin{array}{cccc}
-\sigma_{1} & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 \\
\vdots & & -\sigma_{r} & \vdots \\
0 & 0 & \cdots & 0
\end{array}\right) V^{\prime}=-A
$$

where U and V form the SVD of A. Here, $A+E=0$, thus $\sigma_{\max }(A+E)=0$, and

$$
\left|0+\sigma_{\max }(A)\right|=\sigma_{\max }(E)
$$

is achieved.
2. Suppose that A has less than full column rank, i.e., the $\operatorname{rank}(A)<n$, but $A+E$ has full column rank. Show that

$$
\sigma_{\min }(A+E) \leq \sigma_{\max }(E)
$$

Since A does not have full column rank, there exists $x \neq 0$ such that
$A x=0 \rightarrow(A+E) x=E x \rightarrow\|(A+E) x\|_{2}=\|E x\|_{2} \rightarrow \frac{\|(A+E) x\|_{2}}{\|x\|_{2}}=\frac{\|E x\|_{2}}{\|x\|_{2}} \leq\|E\|_{2}=\sigma_{\max }(E)$.
But,

$$
\sigma_{\min }(A+E) \leq \frac{\|(A+E) x\|_{2}}{\|x\|_{2}}
$$

as shown in chapter 4 (please refer to the proof in the lecture notes!). Thus

$$
\sigma_{\min }(A+E) \leq \sigma_{\max }(E)
$$

Finally, a matrix E that results in $A+E$ having full column rank and that achieves the upper bound is

$$
E=U\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 \\
\vdots & 0 & \sigma_{r+1} & \vdots \\
0 & 0 & 0 & \sigma_{r+1} \\
& & 0 &
\end{array}\right) V^{\prime}
$$

for

$$
A=U\left(\begin{array}{cccc}
\sigma_{1} & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 \\
\vdots & 0 & \sigma_{r} & \vdots \\
& & 0 & \\
& & &
\end{array}\right) V^{\prime}
$$

Note that A has rank $r<n$, but that $A+E$ has rank n,

$$
A+E=U\left(\begin{array}{ccccc}
\sigma_{1} & 0 & 0 & 0 & 0 \\
0 & \ddots & 0 & 0 & 0 \\
0 & 0 & \sigma_{r} & 0 & 0 \\
0 & 0 & 0 & \sigma_{r+1} & 0 \\
0 & 0 & 0 & \cdots & \sigma_{r+1} \\
& & 0 & &
\end{array}\right) V^{\prime}
$$

It is easy to see that $\sigma_{\min }(A+E)=\sigma_{r+1}$, and that $\sigma_{\max }(E)=\sigma_{r+1}$.
The result in part 2, and some extensions to it, give rise to the following procedure (which is widely used in practice) for estimating the rank of an unknown matrix A from a known matrix $A+E$, where $\|E\|_{2}$ is known as well. Essentially, the SVD of $A+E$ is computed, and the rank of A is then estimated to be the number of singular values of $A+E$ that are larger than $\|E\|_{2}$.

Exercise 5.2 Using SVD, A can be decomposed as

$$
A=U\left(\begin{array}{cccc}
\sigma_{1} & & & \\
& \ddots & & \\
& & \sigma_{k} & \\
& & & 0
\end{array}\right) V^{\prime}
$$

where U and V are unitary matrices and $k \geq r+1$. Following the given procedure, let's select the first r +1 columns of $V:\left\{v_{1}, v_{2}, \cdots, v_{r+1}\right\}$. Since V is unitary, those v_{i} 's are orthonormal and hence independent. Note that $\left\{v_{1}, v_{2}, \cdots, v_{r+1}, \cdots v_{n}\right\}$ span \mathbf{R}^{n}, and if $\operatorname{rank}(E)=r$, then exactly r of the vectors, $\left\{v_{1}, v_{2}, \cdots, v_{r+1}, \cdots v_{n}\right\}$, span $\mathcal{R}\left(E^{\prime}\right)=\mathcal{N}^{\perp}(E)$. The remaining vectors span $\mathcal{N}(E)$. So, given any $r+1$ linearly independent vectors in \mathbf{R}^{n}, at least one must be in the nullspace of E. That is there exists coefficients c_{i} for $i=1, \cdots, r+1$, not all zero, such that

$$
E\left(c_{1} v_{1}+c_{2} v_{2}+\cdots c_{r+1} v_{r+1}\right)=0
$$

These coefficients can be normalized to obtain a nonzero vector $z,\|z\|_{2}=1$, given by

$$
z=\sum_{i=1}^{r+1} \alpha_{i} v_{i}=\left(\begin{array}{lll}
v_{1} & \cdots & v_{r+1}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{r+1}
\end{array}\right)
$$

and such that $E z=0$. Thus,

$$
(A-E) z=A z=U \Sigma\left(\begin{array}{ccc}
- & v_{1}^{\prime} & - \tag{1}\\
\vdots & \vdots & \\
- & v_{r+1}^{\prime} & -
\end{array}\right)\left(\sum_{i=1}^{r+1} \alpha_{i} v_{i}\right)=U\left(\begin{array}{c}
\sigma_{1} \alpha_{1} \\
\sigma_{2} \alpha_{2} \\
\vdots \\
\sigma_{r+1} \alpha_{r+1} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

By taking 2-norm of both sides of the above equation,

$$
\begin{align*}
\|(A-E) z\|_{2} & =\left\|U\left(\begin{array}{c}
\sigma_{1} \alpha_{1} \\
\sigma_{2} \alpha_{2} \\
\vdots \\
\sigma_{r+1} \alpha_{r+1} \\
0 \\
\vdots \\
0
\end{array}\right)\right\|_{2}=\left\|\left(\begin{array}{c}
\sigma_{1} \alpha_{1} \\
\sigma_{2} \alpha_{2} \\
\vdots \\
\sigma_{r+1} \alpha_{r+1} \\
0 \\
\vdots \\
0
\end{array}\right)\right\|_{2} \quad \text { (since U is a unitary matrix) } \\
& =\left(\sum_{i=1}^{r+1}\left|\sigma_{i} \alpha_{i}\right|^{2}\right)^{\frac{1}{2}} \geq \sigma_{r+1}\left(\sum_{i=1}^{r+1}\left|\alpha_{i}\right|^{2}\right)^{\frac{1}{2}} \tag{2}
\end{align*}
$$

But, from our construction of z,

$$
\|z\|_{2}^{2}=1 \rightarrow\left\|\left(\begin{array}{lll}
v_{1} & \cdots & v_{r+1}
\end{array}\right)\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{r+1}
\end{array}\right)\right\|_{2}^{2}=1 \rightarrow\left\|\left(\begin{array}{c}
\alpha_{1} \\
\vdots \\
\alpha_{r+1}
\end{array}\right)\right\|_{2}^{2}=\sum_{i=1}^{r+1}\left|\alpha_{i}\right|^{2}=1
$$

Thus, equation(2) becomes

$$
\|(A-E) z\|_{2} \geq \sigma_{r+1}
$$

Finally, $\|(A-E) z\|_{2} \leq\|A-E\|_{2}$ for all z such that $\|z\|_{2}=1$. Hence

$$
\|A-E\|_{2} \geq \sigma_{r+1}
$$

To show that the lower bound can be achieved, choose

$$
E=U\left(\begin{array}{cccc}
\sigma_{1} & & & \\
& \ddots & & \\
& & \sigma_{r} & \\
& & & 0
\end{array}\right) V^{\prime}
$$

E has rank r,

$$
A-E=U\left(\begin{array}{ccccccc}
0 & & & & & & \\
& \ddots & & & & & \\
& & 0 & & & & \\
& & & \sigma_{r+1} & & & \\
& & & & \ddots & & \\
& & & & & \sigma_{k} & \\
& & & & & & 0
\end{array}\right) V^{\prime}
$$

and $\|A-E\|_{2}=\sigma_{r+1}$.

Exercise 6.1 The model is linear one needs to note that the integration operator is a linear operator. Formally one writes

$$
\begin{aligned}
S\left(\alpha u_{1}+\beta u_{2}\right)(t) & =\int_{0}^{\infty} e^{-(t-s)}\left(\alpha u_{1}(s)+\beta u_{2}(s)\right) d s \\
& =\alpha \int_{0}^{\infty} e^{-(t-s)} u_{1}(s)+\beta \int_{0}^{\infty} e^{-(t-s)} u_{2}(s) \\
& =\alpha\left(S u_{1}\right)(t)+\beta\left(S u_{2}\right)(t)
\end{aligned}
$$

It is non-causal since future inputs are needed in order to determine the current value of y. Formally one writes

$$
\left(P_{T} S u\right)(t)=\left(P_{T} S P_{T} u\right)(t)+P_{T}\left(\int_{T}^{\infty} e^{-(t-s)} u(s) d s\right)
$$

It is not memoryless since the current output depends on the integration of past inputs. It is also time varying since

$$
\left(S \sigma_{T} u\right)(t)=\left(\sigma_{T} S u\right)(t)+\int_{-T}^{0} e^{-(t-T-s)} u(s) d s
$$

one can argue that if the only valid input signals are those where $u(t)=0$ if $t<0$ then the system is time invariant.

Exercise 6.4(i) linear, time varying, causal, not memoryless
(ii) nonlinear (affine, tranlated linear) time varying, causal , not memoryless
(iii) nonlinear, time invariant, causal, memoryless
(iv) linear, time varying , causal, not memoryless
(i),(ii) can be called time invariant under the additional requirement that $u(t)=0$ for $t<0$

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

