MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Electrical Engineering and Computer Science

6.241: Dynamic Systems-Fall 2007

Homework 3 Solutions

Exercise 3.2 i) We would like to minimize the 2-norm of u, i.e., $\|\underline{u}\|_{2}^{2}$. Since y_{n} is given as

$$
y_{n}=\sum_{i=1}^{n} h_{i} u_{n-1}
$$

we can rewrite this equality as

$$
y_{n}=\left[\begin{array}{llll}
h_{1} & h_{2} & \cdots & h_{n}
\end{array}\right]\left[\begin{array}{c}
u_{n-1} \\
u_{n-2} \\
\vdots \\
u_{0}
\end{array}\right]
$$

We want to find the \underline{u} with the smallest 2 -norm such that

$$
\bar{y}=A \underline{u} .
$$

where we assume that A has a full rank (i.e. $h_{i} \neq 0$ for some $i, 1 \leq i \leq n$). Then, the solution reduces to the familiar form:

$$
\hat{u}=A^{\prime}\left(A A^{\prime}\right)^{-1} \bar{y}
$$

By noting that $A A^{\prime}=\sum_{i=1}^{n} h_{i}^{2}$, we can obtain \hat{u}_{j} as follows;

$$
\hat{u}_{j}=\frac{h_{j} \bar{y}}{\sum_{i=1}^{n} h_{i}^{2}}, \quad \text { for } \mathrm{j}=0,1, \cdots, \mathrm{n}-1 .
$$

ii) a) Let's introduce e as an error such that $y_{n}=\bar{y}-e$. It can also be written as $\bar{y}-y_{n}=e$. Then now the quantity we would like to minimize can be written as

$$
r\left(\bar{y}-y_{n}\right)^{2}+u_{0}^{2}+\cdots+u_{n-1}^{2}
$$

where r is a positive weighting parameter. The problem becomes to solve the following minimization problem :

$$
\hat{u}=\arg \min _{u} \sum_{i=1}^{n} u_{i}^{2}+r e^{2}=\arg \min _{u}\left(\|\underline{u}\|_{2}^{2}+r\|e\|_{2}^{2}\right),
$$

from which we see that r is a weight that characterizes the tradeoff between the size of the final error, $\bar{y}-y_{n}$, and energy of the input signal, \underline{u}.

In order to reduce the problem into the familiar form, i.e, $\|y-A x\|$, let's augment $\sqrt{r} e$ at the bottom of \underline{u} so that a new augmented vector, $\underline{\tilde{u}}$ is

$$
\underline{\tilde{u}}=\left[\begin{array}{c}
\underline{u} \\
\cdots \\
\sqrt{r} e
\end{array}\right],
$$

This choice of $\underline{\tilde{u}}$ follows from the observation that this is the $\underline{\tilde{u}}$ that would have $\|\underline{\tilde{u}}\|_{2}^{2}=\|\underline{u}\|_{2}^{2}+r e^{2}$, the quantity we aim to minimize .

Now we can write \bar{y} as follows

$$
\bar{y}=\left[\begin{array}{lll}
A & \vdots & \frac{1}{\sqrt{r}}
\end{array}\right]\left[\begin{array}{c}
\underline{u} \\
\cdots \\
\sqrt{r} e
\end{array}\right]=\tilde{A} \underline{\tilde{u}}=A \underline{u}+e=y_{n}+e .
$$

Now, \hat{u} can be obtained using the augmented A, \tilde{A}, as

$$
\hat{u}=\tilde{A}^{\prime}\left(\tilde{A} \tilde{A}^{\prime}\right)^{-1} \bar{y}=\left[\begin{array}{c}
A^{\prime} \\
\frac{1}{\sqrt{r}}
\end{array}\right]\left[A A^{\prime}+\frac{1}{r}\right] \bar{y}
$$

By noting that

$$
A A^{\prime}+\frac{1}{r}=\sum_{i=1}^{n} h_{i}^{2}+\frac{1}{r}
$$

we can obtain \hat{u}_{j} as follows

$$
\hat{u}_{j}=\frac{h_{j} \bar{y}}{\sum_{i=1}^{n} h_{i}^{2}+\frac{1}{r}} \text { for } \mathrm{j}=0, \cdots, \mathrm{n}-1
$$

ii) b) When $r=0$, it can be interpreted that the error can be anything, but we would like to minimize the input energy. Thus we expect that the solution will have all the $u_{i}{ }^{\prime} s$ to be zero. In fact, the expression obtained in ii) a) will be zero as $r \rightarrow 0$. On the other hand, the other situation is an interesting case. We put a weight of ∞ to the final state error, then the expression from ii) a) gives the same expression as in i) as $r \rightarrow \infty$.

Exercise 3.3 This problem is similar to Example 3.4, except now we require that $\dot{p}(T)=0$. We can derive, from $x(t)=\ddot{p}(t)$, that $p(t)=x(t) * t u(t)=\int_{0}^{t}(t-\tau) x(\tau) \mathrm{d} \tau$ where $*$ denotes convolution and $u(t)$ is the unit step, defined as 1 when $t>0$ and 0 when $t<0$. (One way to derive this is to take $x(t)=\ddot{p}(t)$ to the Laplace domain, taking into account initial conditions, to find the transfer function $H(s)=P(s) / X(s)$, hence the impulse response, $h(t)$ such that $p(t)=x(t) * h(t))$. Similarly, $\dot{p}(t)=x(t) * u(t)=\int_{0}^{t} x(\tau) \mathrm{d} \tau$. So, $y=p(T)=\int_{0}^{T}(T-\tau) x(\tau) \mathrm{d} \tau$ and $0=\dot{p}(T)=$ $x(t) * u(t)=\int_{0}^{T} x(\tau) \mathrm{d} \tau$. You can check that $<g(t), f(t)>=\int_{0}^{T} g(t) f(t) \mathrm{d} \tau$ is an inner product on the space of continuous functions on $[0, T]$, denoted by $C[0, T]$, which we are searching for $x(t)$. So, we have that $y=p(T)=<(T-t), x(t)>$ and $0=\dot{p}(T)=<1, x(t)>$. In matrix form,

$$
\left[\begin{array}{l}
y \\
0
\end{array}\right]=\left[\begin{array}{c}
<T-t, x(t)> \\
<1, x(t)>
\end{array}\right]=\prec\left[\begin{array}{ll}
T-t & 1
\end{array}\right], x(t) \succ
$$

where $\prec ., . \succ$ denotes the Grammian, as defined in chapter 2. Now, in chapter 3, it was shown that the minimum length solution to $y=\prec A, x \succ$, is $\hat{x}=A \prec A, A \succ^{-1} y$. So, for our problem,

$$
\hat{x}=\left[\begin{array}{ll}
T-t & 1
\end{array}\right] \prec\left[\begin{array}{ll}
T-t & 1
\end{array}\right],\left[\begin{array}{ll}
T-t & 1
\end{array}\right] \succ^{-1}\left[\begin{array}{l}
y \\
0
\end{array}\right]
$$

Where, using the definition of the Grammian, we have that:

$$
\prec\left[\begin{array}{cc}
T-t & 1
\end{array}\right],\left[\begin{array}{cc}
T-t & 1
\end{array}\right] \succ=\left[\begin{array}{cc}
<T-t, T-t> & <T-t, 1> \\
<1, T-t> & <1,1>
\end{array}\right] .
$$

Now, we can use the definition for inner product to find the individual entries, $<T-t, T-t>=$ $\int_{0}^{T}(T-t)^{2} \mathrm{~d} t=T^{3} / 3,<T-t, 1>=\int_{0}^{T}(T-t) \mathrm{d} t=T^{2} / 2$, and $<1,1>=T$. Plugging these in, one can simplify the expression for \hat{x} and obtain $\hat{x}(t)=\frac{12 y}{T^{2}}\left[\frac{1}{2}-\frac{t}{T}\right]$ for $t \in[0, T]$.

Alternatively, we have that $x(t)=\ddot{p}(t)$. Integrating both sides and taking into account that $p(0)=0$ and $\dot{p}(0)=0$, we have $p(t)=\int_{0}^{t} \int_{0}^{t_{1}} x(\tau) \mathrm{d} \tau \mathrm{d} t_{1}=\int_{0}^{t} f\left(t_{1}\right) \mathrm{d} t_{1}$. Now, we use the integration by parts formula, $\int_{0}^{t} u \mathrm{~d} v=\left.u v\right|_{0} ^{t}-\int_{0}^{t} v \mathrm{~d} u$, with $u=f\left(t_{1}\right)=\int_{0}^{t_{1}} x(\tau) \mathrm{d} \tau$, and $\mathrm{d} v=\mathrm{d} t_{1}$; hence $\mathrm{d} u=$ $\mathrm{d} f\left(t_{1}\right)=x\left(t_{1}\right) \mathrm{d} t_{1}$ and $v=t_{1}$. Plugging in and simplifying we get that $p(t)=\int_{0}^{t} \int_{0}^{t_{1}} x(\tau) \mathrm{d} \tau \mathrm{d} t_{1}=$ $\int_{0}^{t}(t-\tau) x(\tau) \mathrm{d} \tau$. Thus, $y=p(T)=\int_{0}^{T}(T-\tau) x(\tau) \mathrm{d} \tau=<T-t, x(t)>$. In addition, we have that $0=\dot{p}(T)=\int_{0}^{T} x(\tau) \mathrm{d} \tau=<1, x(t)>$. That is, we seek to find the minimum length $x(t)$ such that

$$
\begin{aligned}
& y=<T-t, x(t)> \\
& 0=<1, x(t)>
\end{aligned}
$$

Recall that the minimum length solution $\hat{x}(t)$ must be a linear combination of $T-t$ and 1 , i.e., $\hat{x}(t)=a_{1}(T-t)+a_{2}$. So,

$$
\begin{array}{rcccc}
y=<T-t, a_{1}(T-t)+a_{2}> & = & a_{1} \int_{0}^{T}(T-t)^{2} \mathrm{~d} t+a_{2} \int_{0}^{T}(T-t) \mathrm{d} t & =a_{1} \frac{T^{3}}{3}+a_{2} \frac{T^{2}}{2} \\
0=<1, a_{1}(T-t)+a_{2}> & = & \int_{0}^{T}\left(a_{1}(T-t)+a_{2}\right) \mathrm{d} t & =a_{1} \frac{T^{2}}{2}+a_{2} T
\end{array}
$$

This is a system of two equations and two unknowns, which we can rewrite in matrix form:

$$
\left[\begin{array}{l}
y \\
0
\end{array}\right]=\left[\begin{array}{cc}
\frac{T^{3}}{3} & \frac{T^{2}}{2} \\
\frac{T^{2}}{2} & T
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]
$$

So,

$$
\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{T^{3}}{3} & \frac{T^{2}}{2} \\
\frac{T^{2}}{2} & T
\end{array}\right]^{-1}\left[\begin{array}{l}
y \\
0
\end{array}\right]
$$

Exercise 4.1 Note that for any $v \in C^{m}$, (show this!)

$$
\begin{equation*}
\|v\|_{\infty} \leq\|v\|_{2} \leq \sqrt{m}\|v\|_{\infty} \tag{1}
\end{equation*}
$$

Therefore, for $A \in C^{m \times n}$ with $x \in \mathbb{C}^{n}$

$$
\|A x\|_{2} \leq \sqrt{m}\|A x\|_{\infty} \rightarrow \text { for } x \neq 0, \frac{\|A x\|_{2}}{\|x\|_{2}} \leq \sqrt{m} \frac{\|A x\|_{\infty}}{\|x\|_{2}} .
$$

But, from equation (1), we also know that $\frac{1}{\|x\|_{\infty}} \geq \frac{1}{\|x\|_{2}}$. Thus,

$$
\begin{equation*}
\frac{\|A x\|_{2}}{\|x\|_{2}} \leq \frac{\sqrt{m}\|A x\|_{\infty}}{\|x\|_{2}} \leq \frac{\sqrt{m}\|A x\|_{\infty}}{\|x\|_{\infty}} \leq \sqrt{m}\|A\|_{\infty} \tag{2}
\end{equation*}
$$

Equation (2) must hold for all $x \neq 0$, therefore

$$
\max _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\|A\|_{2} \leq \sqrt{m}\|A\|_{\infty}
$$

To prove the lower bound $\frac{1}{\sqrt{n}}\|A\|_{\infty} \leq\|A\|_{2}$, reconsider equation (1):

$$
\begin{equation*}
\|A x\|_{\infty} \leq\|A x\|_{2} \rightarrow \text { for } x \neq 0, \frac{\|A x\|_{\infty}}{\|x\|_{2}} \leq \frac{\|A x\|_{2}}{\|x\|_{2}} \leq\|A\|_{2} \rightarrow \frac{\sqrt{n}\|A x\|_{\infty}}{\|x\|_{2}} \leq \frac{\sqrt{n}\|A x\|_{2}}{\|x\|_{2}} \leq \sqrt{n}\|A\|_{2} \tag{3}
\end{equation*}
$$

But, from equation (1) for $x \in C^{n}, \frac{\sqrt{n}}{\|x\|_{2}} \geq \frac{1}{\|x\|_{\infty}}$. So,

$$
\frac{\|A x\|_{\infty}}{\|x\|_{\infty}} \leq \frac{\sqrt{n}\|A x\|_{\infty}}{\|x\|_{2}} \leq \sqrt{n}\|A\|_{2}
$$

for all $x \neq 0$ including x that makes $\frac{\|A x\|_{\infty}}{\|x\|_{\infty}}$ maximum, so,

$$
\max _{x \neq 0} \frac{\|A x\|_{\infty}}{\|x\|_{\infty}}=\|A\|_{\infty} \leq \sqrt{n}\|A\|_{2}
$$

or equivalently,

$$
\frac{1}{\sqrt{n}}\|A\|_{\infty} \leq\|A\|_{2}
$$

Exercise 4.5 Any $m \times n$ matrix A, it can be expressed as

$$
A=U\left(\begin{array}{cc}
\Sigma & 0 \\
0 & 0
\end{array}\right) V^{\prime}
$$

where U and V are unitary matrices. The "Moore-Penrose inverse", or pseudo-inverse of A, denoted by A^{+}, is then defined as the $n \times m$ matrix

$$
A^{+}=V\left(\begin{array}{cc}
\Sigma^{-1} & 0 \\
0 & 0
\end{array}\right) U^{\prime}
$$

a) Now we have to show that $A^{+} A$ and $A A^{+}$are symmetric, and that $A A^{+} A=A$ and $A^{+} A A^{+}=$ A^{+}. Suppose that Σ is a diagonal invertible matrix with the dimension of $r \times r$. Using the given definitions as well as the fact that for a unitary matrix $U, U^{\prime} U=U U^{\prime}=I$, we have

$$
\begin{aligned}
A A^{+} & =U\left(\begin{array}{cc}
\Sigma & 0 \\
0 & 0
\end{array}\right) V^{\prime} V\left(\begin{array}{cc}
\Sigma^{-1} & 0 \\
0 & 0
\end{array}\right) U^{\prime} \\
& =U\left(\begin{array}{cc}
\Sigma & 0 \\
0 & 0
\end{array}\right) I\left(\begin{array}{cc}
\Sigma^{-1} & 0 \\
0 & 0
\end{array}\right) U^{\prime} \\
& =U\left(\begin{array}{cc}
I_{r \times r} & 0 \\
0 & 0
\end{array}\right) U^{\prime}
\end{aligned}
$$

which is symmetric. Similarly,

$$
\begin{aligned}
A^{+} A & =V\left(\begin{array}{cc}
\Sigma^{-1} & 0 \\
0 & 0
\end{array}\right) U^{\prime} U\left(\begin{array}{cc}
\Sigma & 0 \\
0 & 0
\end{array}\right) V^{\prime} \\
& =V\left(\begin{array}{cc}
\Sigma^{-1} & 0 \\
0 & 0
\end{array}\right) I\left(\begin{array}{cc}
\Sigma & 0 \\
0 & 0
\end{array}\right) V^{\prime} \\
& =V\left(\begin{array}{cc}
I_{r \times r} & 0 \\
0 & 0
\end{array}\right) V^{\prime}
\end{aligned}
$$

which is again symmetric.
The facts derived above can be used to show the other two.

$$
\begin{aligned}
A A^{+} A & =\left(A A^{+}\right) A=U\left(\begin{array}{cc}
I_{r \times r} & 0 \\
0 & 0
\end{array}\right) U^{\prime} A \\
& =U\left(\begin{array}{cc}
I_{r \times r} & 0 \\
0 & 0
\end{array}\right) U^{\prime} U\left(\begin{array}{cc}
\Sigma & 0 \\
0 & 0
\end{array}\right) V^{\prime} \\
& =U\left(\begin{array}{cc}
\Sigma & 0 \\
0 & 0
\end{array}\right) V^{\prime} \\
& =A
\end{aligned}
$$

Also,

$$
\begin{aligned}
A^{+} A A^{+} & =\left(A^{+} A\right) A^{+}=V\left(\begin{array}{cc}
I_{r \times r} & 0 \\
0 & 0
\end{array}\right) V^{\prime} A^{+} \\
& =V\left(\begin{array}{cc}
I_{r \times r} & 0 \\
0 & 0
\end{array}\right) V^{\prime} V\left(\begin{array}{cc}
\Sigma^{-1} & 0 \\
0 & 0
\end{array}\right) U^{\prime} \\
& =V\left(\begin{array}{cc}
\Sigma^{-1} & 0 \\
0 & 0
\end{array}\right) U^{\prime} \\
& =A^{+}
\end{aligned}
$$

b) We have to show that when A has full column rank then $A^{+}=\left(A^{\prime} A\right)^{-1} A^{\prime}$, and that when A has full row rank then $A^{+}=A^{\prime}\left(A A^{\prime}\right)^{-1}$. If A has full column rank, then we know that $m \geq n$, $\operatorname{rank}(A)=n$, and

$$
A=U\binom{\Sigma_{n \times n}}{0} V^{\prime}
$$

Also, as shown in chapter 2 , when A has full column rank, $\left(A^{\prime} A\right)^{-1}$ exists. Hence

$$
\begin{aligned}
\left(A^{\prime} A\right)^{-1} A^{\prime} & =\left(\begin{array}{ll}
V\left(\begin{array}{ll}
\Sigma^{\prime} & 0
\end{array}\right) U^{\prime} U\binom{\Sigma}{0} V^{\prime}
\end{array}\right)^{-1} V\left(\begin{array}{ll}
\Sigma^{\prime} & 0
\end{array}\right) U^{\prime} \\
& =\left(\begin{array}{ll}
\left.V \Sigma^{\prime} \Sigma V^{\prime}\right)^{-1} V\left(\begin{array}{cc}
\Sigma^{\prime} & 0
\end{array}\right) U^{\prime} \\
& =V\left(\Sigma^{\prime} \Sigma\right)^{-1} V^{\prime} V\left(\begin{array}{ll}
\Sigma^{\prime} & 0
\end{array}\right) U^{\prime} \\
& =V\left(\Sigma^{\prime} \Sigma\right)^{-1}\left(\begin{array}{ll}
\Sigma^{\prime} & 0
\end{array}\right) U^{\prime} \\
& =V\left(\Sigma^{-1}\right. \\
0
\end{array}\right) U^{\prime} \\
& =A^{+}
\end{aligned}
$$

Similarly, if A has full row rank, then $n \geq m, \operatorname{rank}(A)=m$, and

$$
A=U\left(\begin{array}{cc}
\Sigma_{m \times m} & 0
\end{array}\right) V^{\prime}
$$

It can be proved that when A has full row rank, $\left(A^{\prime} A\right)^{-1}$ exists. Hence,

$$
\begin{aligned}
A^{\prime}\left(A A^{\prime}\right)^{-1} & =V\binom{\Sigma^{\prime}}{0} U^{\prime}\left(U\left(\begin{array}{ll}
\Sigma & 0
\end{array}\right) V^{\prime} V\binom{\Sigma^{\prime}}{0} U^{\prime}\right)^{-1} \\
& =V\binom{\Sigma^{\prime}}{0} U^{\prime}\left(U \Sigma \Sigma^{\prime} U^{\prime}\right)^{-1} \\
& =V\binom{\Sigma^{\prime}}{0} U^{\prime} U\left(\Sigma \Sigma^{-1}\right) U^{\prime} \\
& =V\binom{\Sigma^{-1}}{0} U^{\prime} \\
& =A^{+}
\end{aligned}
$$

c) Show that, of all x that minimize $\|y-A x\|_{2}$, the one with the smallest length $\|x\|_{2}$ is given by $\hat{x}=A^{+} y$. If A has full row rank, we have shown in chapter 3 that the solution with the smallest length is given by

$$
\hat{x}=A^{\prime}\left(A A^{\prime}\right)^{-1} y
$$

and from part (b), $A^{\prime}\left(A A^{\prime}\right)^{-1}=A^{+}$. Therefore

$$
\hat{x}=A^{+} y
$$

Similary, it can be shown that the pseudo inverse is the solution for the case when a matrix A has a full column rank (compare the results in chapter 2 with the expression you found in part (b) for A^{+}when A has full column rank).

Now, let's consider the case when a matrix A is rank deficient, i.e., $\operatorname{rank}(A)=r<\min (m, n)$ where $A \in C^{m \times n}$ and is thus neither full row or column rank. Suppose we have a singular value decomposition of A as

$$
A=U \Sigma V^{\prime}
$$

where U and V are unitary matrices. Then the norm we are minimizing is

$$
\|A x-y\|=\left\|U \Sigma V^{\prime} x-y\right\|=\left\|U\left(\Sigma V^{\prime} x-U^{\prime} y\right)\right\|=\left\|\Sigma z-U^{\prime} y\right\|
$$

where $z=V^{\prime} x$, since $\|\cdot\|$ is unaltered by the orthogonal transformation, U. Thus, x minimizes $\|A x-y\|$ if and only if z minimizes $\|\Sigma z-c\|$, where $c=U^{\prime} y$. Since the rank of A is r, the matrix Σ has the nonzero singular values $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{r}$ in its diagonal entries. Then we can rewrite $\|\Sigma z-c\|^{2}$ as follows:

$$
\|\Sigma z-c\|^{2}=\sum_{i=1}^{r}\left(\sigma_{i} z_{i}-c_{i}\right)^{2}+\sum_{i=r+1}^{n} c_{i}^{2}
$$

It is clear that the minimum of the norm can be achived when $z_{i}=\frac{c_{i}}{\sigma_{i}}$ for $i=1,2, \cdots, r$ and the rest of the z_{i} 's can be chosen arbitrarily. Thus, there are infinitely many solutions \hat{z} and the
solution with the minimum norm can be achieved when $z_{i}=0$ for $i=r+1, r+2, \cdots, n$. Thus, we can write this \hat{z} as

$$
z=\Sigma_{1} c
$$

where

$$
\Sigma_{1}=\left(\begin{array}{cc}
\Sigma_{r}^{-1} & 0 \\
0 & 0
\end{array}\right)
$$

and Σ_{r} is a square matrix with nonzero singular values in its diagonal in decreasing order. This value of z also yields the value of x of minimal 2 norm since V is a unitary matrix.
Thus the solution to this problem is

$$
\hat{x}=V z=V \Sigma_{1} c=V \Sigma_{1} U^{\prime} y=A^{+} y
$$

It can be easily shown that this choice of A^{+}satisfies all the conditions, or definitions, of pseudo inverse in a).

Exercise 4.6. a) Suppose $A \in C_{n}^{m}$ has full column rank. Then $Q R$ factorization for A can be easily constructed from SVD:

$$
A=U\binom{\Sigma_{n}}{0} V^{\prime}
$$

where Σ_{n} is a $n \times n$ diagonal matrix with singular values on the diagonal. Let $Q=U$ and $R=\Sigma_{n} V^{\prime}$ and we get the $Q R$ factorization. Since Q is an orthogonal matrix, we can represent any $Y \in C_{p}^{m}$ as

$$
Y=Q\binom{Y_{1}}{Y_{2}}
$$

Next

$$
\|Y-A X\|_{F}^{2}=\left\|Q\binom{Y_{1}}{Y_{2}}-Q\binom{R}{0} X\right\|_{F}^{2}=\left\|Q\binom{Y_{1}-R X}{Y_{2}}\right\|_{F}^{2}
$$

Denote

$$
D=\binom{Y_{1}-R X}{Y_{2}}
$$

and note that multiplication by an orthogonal matrix does not change Frobenius norm of the matrix:

$$
\|Q D\|_{F}^{2}=\operatorname{tr}\left(D^{\prime} Q^{\prime} Q D\right)=\operatorname{tr}\left(D^{\prime} D\right)=\|D\|_{F}^{2}
$$

Since Frobenius norm squared is equal to sum of squares of all elements, square of the Frobenius norm of a block matrix is equal to sum of the squares of Frobenius norms of the blocks:

$$
\left\|\binom{Y_{1}-R X}{Y_{2}}\right\|_{F}^{2}=\left\|Y_{1}-R X\right\|_{F}^{2}+\left\|Y_{2}\right\|_{F}^{2}
$$

Since Y_{2} block can not be affected by choice of X matrix, the problem reduces to minimization of $\left\|Y_{1}-R X\right\|_{F}^{2}$. Recalling that R is invertible (because A has full column rank) the solution is

$$
X=R^{-1} Y_{1}
$$

b) Evaluate the expression with the pseudoinverse using the representations of A and Y from part a):
$\left(A^{\prime} A\right)^{-1} A^{\prime} Y=\left(\left[\begin{array}{ll}R^{\prime} & 0\end{array}\right] Q^{\prime} Q\left[\begin{array}{c}R \\ 0\end{array}\right]\right)^{-1}\left[\begin{array}{ll}R^{\prime} & 0\end{array}\right] Q^{\prime} Q\left[\begin{array}{c}Y_{1} \\ Y_{2}\end{array}\right]=R^{-1}\left(R^{\prime}\right)^{-1}\left[\begin{array}{ll}R^{\prime} & 0\end{array}\right]\left[\begin{array}{c}Y_{1} \\ Y_{2}\end{array}\right]=R^{-1} Y_{1}$
From 4.5 b) we know that if a matrix has a full column rank, $A^{+}=\left(A^{\prime} A\right)^{-1} A^{\prime}$, therefore both expressions give the same solutions.
c)

$$
\|Y-A X\|_{F}^{2}+\|Z-B X\|_{F}^{2}=\left\|\binom{Y}{Z}-\binom{A}{B} X\right\|_{F}^{2}
$$

Since A has full column rank, $\binom{A}{B}$ also has full column rank, therefore we can apply results from parts a) and b) to conclude that

$$
X=\left(\binom{A}{B}^{\prime}\binom{A}{B}\right)^{-1}\binom{A}{B}^{\prime}\binom{Y}{Z}=\left(A^{\prime} A+B^{\prime} B\right)^{-1}\left(A^{\prime} Y+B^{\prime} Z\right)
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

