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Exercise 1.1 a) Given square matrices A1 and A4, we know that A is square as well: � 
A

 

� 
1 A2A = 
0 A4 � � �  

I 0 A
  1 A2 = .

0 A4 0 I 

�
Note that �  

I 0 
det 

�
= det(I)det(A4) = det(A4),0 A4 

which can be verified by recursively computing the principal minors. Also, by the elementary 
operations of rows, we have 

    
A1 A2 A1 0 

det =

� �
= det 

� �
= det(A1). 0 I 0 I 

Finally note that when A and B are square, we have that det(AB) = det(A)det(B). Thus we have 

det(A) = det(A1)det(A4). 

  b) Assume A−1
1 and A4

−1 exist. Then 

   
−1  

�
A1 A2 B1 B2 I 0 

AA =
0

�� �
= 

�
0 I 

�
,

 A4 B3 B4 

which yields four matrix equations: 

1. A1B1 + A2B3 = I, 

2. A1B2 + A2B4 = 0, 

3. A4B3 = 0, 

4. A4B4 = I. 

From Eqn (4), B 1 1 1 
4 = A−

4 , with which Eqn (2) yields B2 = −A1
− A2A4

−
 . Also, from Eqn (3) 

B3 = 0, with whic 1 h from Eqn (1) B1 = A1
− . Therefore, 

    A−1 
 A−1A2A

−1

A−1 =

�
1 − 1 4

0 A−1 
4

�
. 

1 



� � 

Exercise 1.2 a) � � �  
0 

�  
I A1 A2 A A

= 3

I 0 A3 A4 

�
 4 

A1 A2 

�
b) Let us find � 

B2B = 

� 
B

 1 

B3 B4 

such that �  
A1BA =  A2

0 A  A A 1
4 − 3 1

−
 A2

�
The above equation implies four equations for submatrices 

1. B1A1 + B2A3 = A1, 

2. B1A2 + B2A4 = A2, 

3. B3A1 + B4A3 = 0, 

4. B3A2 + B4A4 = A A3A
−1

4 − 1 A2.

First two equations yield B1 = I and B2 = 0. Express B3 from the third equation as B =  3  
− 4 A   fourth.  B A3 1

−1 
 and plug it into the After gathering the terms we get B 1

4 A4 − A3A
−
1 A2 = 

A4 − A3A
−1
1 A2, which turns into identity if we set B4 = I. Therefore�  

� �
I 0 

B = − −1 A3A1 I

�
c) Using linear operations�  on rows we see that det (B) = 1. Then, det(A) = det(B)det(A) =     
det (BA) = det (A1) det A4 − A3A1

−1A2 
�
. Note that 

�
A4 − A3A

−1
1 A2 

�
does not have to be invert

ible for the proof. 

Exercise 1.3 We have to prove that det(I − AB) = det(I − BA). 
Proof: Since I and I − BA are square, �  

I 0 
det(I − BA) = det 

B I − BA 
 

�
�� �� �� 

I A I 
= det 

−A 
    

= det 

� B I 0
 � � I

 � 
I A I 

det 
−A 

, 
B I 0 I 

yet, from Exercise 1.1, we have 

det 
I −A 

= det(I)det(I) = 1. 
0 I 

Thus, � � 
I A 

det(I − BA) = det . 
B I 

2 



  
d 1 d d 
(A(t)B(t)) = A(t)B(t) + Δt A(t)B(t) + ΔtA(t) B(t) + h.o.t.  A(t)B(t) . 

of limits, i.e. 
d A(t +Δt)B(t +Δt)  A(t)B(t) 
(A(t)B(t)) = lim 

−
dt Δt→0 Δt

We substitute first order Taylor series expansions 

d 
A(t +Δt) = A(t) + Δt A(t) + o(Δt)

dt 

d 
B(t +Δt) = B(t) + Δt B(t) + o(Δt)

dt 
to obtain 

dt Δt 

�
dt dt 

−
�

Here “h.o.t.” stands for the terms �    
d d

h.o.t. = A(t) + Δt A(t) 

�
o(Δt) + o(Δt) 

�
B(t) + Δt B(t)  o(Δ

dt 

�
+ t2),

dt 

a matrix quantity, where limΔt 0 h.o.t./Δt = 0 (verify). Reducing the expression and taking the →
limit, we obtain 

d d d 
[A(t)B(t)] = A(t)B(t) + A(t) B(t). 

dt dt dt 

b) For this part we write the identity A−1(t)A(t) = I. Taking the derivative on both sides, we have 

d �  d d 
A−1(t)A(t)

�
= A−1(t)A(t) + A−1(t) A(t) = 0 

dt dt dt 
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Now, �    
I A 

det 

�
= det 

�
I − AB 0 

�
= det(I − AB). 

B I B I 

Therefore 
det(I − BA) = det(I − AB). 

Note that (I − BA) is a q × q matrix while (I − AB) is a p × p matrix. Thus, when one wants to 
compute the determinant of (I − AB) or (I − BA), s/he can compare p and q to pick the product 
(AB or BA) with the smaller size. 

b) We have to show that (I −  AB)−1A = A(I 
 

− BA)−1. 
 Proof: Assume that (I − BA)−1 and (I − AB)−1 exist. Then, 

  A = A · I = A(I − BA)(I − BA)−1

 = (A − ABA)(I − BA)−1

  = (I −AB)A(I − BA)−1

→ (I − AB)−1 1 A = A(I − BA)− . 

This completes the proof. 

Exercise 1.6 a) The safest way to find the (element-wise) derivative is by its definition in terms 



Rearranging and multiplying on the right by A−1(t), we obtain 

d
A−1(t) = −A−1 d 

(t) A(t)A−1(t). 
dt dt 

Exercise 1.8 Let  (   X = {g x) = α 2 M
0 + α1x + α2x + · · · + αM x

 
| αi ∈ C}. 

a) We have to show that the set B = {1, x, · · · , xM} is a basis for X.
Proof : 

1. First, let’s show that elements in B are linearly independent. It is clear that each element in 
B can not be written as a linear combination of each other. More formally, 

c (1) + c (x) + · · · + c (xM  
1 1 M ) = 0 ↔ ∀i ci = 0.

Thus, elements of B are linearly independent. 

2. Then, let’s show that elements in B span the space X. Every polynomial of order less than 
or equal to M looks like 

M  
p(x) = αix

i  

i=0 

for some set of α

�
i’s.


Therefore, {1, x1, · · ·  , xM} span X.


   →      d b) T : X X and T (g(x)) = g(x).dx 

1. Show that T is linear.

Proof:


d 
T (ag1(x) + bg2(x)) = (ag1(x) + bg2(x))

dx
d d 

= a g1 + b g2
dx dx

= aT (g1) + bT (g2). 

Thus, T is linear. 

2. g(x) = α 2 
0 + α1x + α2x + · · · + M αM x , so 

T (g(x)) = α + 2α x + · · · + Mα xM2 M  1
1 

−  .

Thus it can be written as follows: 

 
0 1 0 0  0 α  α

⎞⎛⎞⎛⎞⎛
0 1· · ·⎜⎜⎜⎜⎜⎜⎜⎝


0 0 2 0 0
· · ·

0 0 0 3 0
· · ·

. . . .
 .
. . . . .
. . . .
 . 0


⎜⎜⎜⎜⎜⎜⎜⎝


⎟⎟⎟⎟⎟⎟⎟⎠


α1 

α2 

α3 
. . 

⎟⎟⎟⎟⎟⎟⎟⎠


=


⎜⎜⎜⎜⎜⎜⎜⎝


2α2 

3α3 
.
.
.


MαM 

⎟⎟⎟⎟⎟⎟⎟⎠


.


0 0 0 0 M
· · ·
 .

0 0 0 0 0 αM 0· · · 

4 



The big matrix, M , is a matrix representation of T with respect to basis B. The column 
vector in the left is a representation of g(x) with respect to B. The column vector in the 
right is T (g) with respect to basis B. 

3. Since the matrix M is upper triangular with zeros along diagonal (in fact M is Hessenberg), 
the eigenvalues are all 0;


λi = 0 ∀i = 1, ,M + 1.
· · · 

4. One eigenvector of M for λ1 = 0 must satisfy MV1 = λ1V1 = 0 ⎞
⎛


V1 = 
⎜⎜⎜⎝


1

0

. . . 
0 

⎟⎟⎟⎠


is one eigenvector. Since λi ’s are not distinct, the eigenvectors are not necessarily inde
pendent. Thus in order to computer the M others, ones uses the generalized eigenvector 
formula. 
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