6.241: Dynamic Systems-Spring 2011

Homework 1 Solutions

Exercise 1.1 a) Given square matrices A_{1} and A_{4}, we know that A is square as well:

$$
\begin{gathered}
A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{4}
\end{array}\right) \\
=\left(\begin{array}{cc}
I & 0 \\
0 & A_{4}
\end{array}\right) \cdot\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & I
\end{array}\right)
\end{gathered}
$$

Note that

$$
\operatorname{det}\left(\begin{array}{cc}
I & 0 \\
0 & A_{4}
\end{array}\right)=\operatorname{det}(I) \operatorname{det}\left(A_{4}\right)=\operatorname{det}\left(A_{4}\right),
$$

which can be verified by recursively computing the principal minors. Also, by the elementary operations of rows, we have

$$
\operatorname{det}=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & I
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
A_{1} & 0 \\
0 & I
\end{array}\right)=\operatorname{det}\left(A_{1}\right) .
$$

Finally note that when A and B are square, we have that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. Thus we have

$$
\operatorname{det}(A)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{4}\right) .
$$

b) Assume A_{1}^{-1} and A_{4}^{-1} exist. Then

$$
A A^{-1}=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{4}
\end{array}\right)\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right)=\left(\begin{array}{cc}
I & 0 \\
0 & I
\end{array}\right),
$$

which yields four matrix equations:

1. $A_{1} B_{1}+A_{2} B_{3}=I$,
2. $A_{1} B_{2}+A_{2} B_{4}=0$,
3. $A_{4} B_{3}=0$,
4. $A_{4} B_{4}=I$.

From Eqn (4), $B_{4}=A_{4}^{-1}$, with which Eqn (2) yields $B_{2}=-A_{1}^{-1} A_{2} A_{4}^{-1}$. Also, from Eqn (3) $B_{3}=0$, with which from Eqn (1) $B_{1}=A_{1}^{-1}$. Therefore,

$$
A^{-1}=\left(\begin{array}{cc}
A_{1}^{-1} & -A_{1}^{-1} A_{2} A_{4}^{-1} \\
0 & A_{4}^{-1}
\end{array}\right)
$$

Exercise 1.2 a)

$$
\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right)=\left(\begin{array}{ll}
A_{3} & A_{4} \\
A_{1} & A_{2}
\end{array}\right)
$$

b) Let us find

$$
B=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right)
$$

such that

$$
B A=\left(\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{4}-A_{3} A_{1}^{-1} A_{2}
\end{array}\right)
$$

The above equation implies four equations for submatrices

1. $B_{1} A_{1}+B_{2} A_{3}=A_{1}$,
2. $B_{1} A_{2}+B_{2} A_{4}=A_{2}$,
3. $B_{3} A_{1}+B_{4} A_{3}=0$,
4. $B_{3} A_{2}+B_{4} A_{4}=A_{4}-A_{3} A_{1}^{-1} A_{2}$.

First two equations yield $B_{1}=I$ and $B_{2}=0$. Express B_{3} from the third equation as $B_{3}=$ $-B_{4} A_{3} A_{1}^{-1}$ and plug it into the fourth. After gathering the terms we get $B_{4}\left(A_{4}-A_{3} A_{1}^{-1} A_{2}\right)=$ $A_{4}-A_{3} A_{1}^{-1} A_{2}$, which turns into identity if we set $B_{4}=I$. Therefore

$$
B=\left(\begin{array}{cc}
I & 0 \\
-A_{3} A_{1}^{-1} & I
\end{array}\right)
$$

c) Using linear operations on rows we see that $\operatorname{det}(B)=1$. Then, $\operatorname{det}(A)=\operatorname{det}(B) \operatorname{det}(A)=$ $\operatorname{det}(B A)=\operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{4}-A_{3} A_{1}^{-1} A_{2}\right)$. Note that $\left(A_{4}-A_{3} A_{1}^{-1} A_{2}\right)$ does not have to be invertible for the proof.

Exercise 1.3 We have to prove that $\operatorname{det}(I-A B)=\operatorname{det}(I-B A)$.
Proof: Since I and $I-B A$ are square,

$$
\begin{aligned}
\operatorname{det}(I-B A) & =\operatorname{det}\left(\begin{array}{cc}
I & 0 \\
B & I-B A
\end{array}\right) \\
& =\operatorname{det}\left(\left(\begin{array}{cc}
I & A \\
B & I
\end{array}\right)\left(\begin{array}{cc}
I & -A \\
0 & I
\end{array}\right)\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
I & A \\
B & I
\end{array}\right) \operatorname{det}\left(\begin{array}{cc}
I & -A \\
0 & I
\end{array}\right)
\end{aligned}
$$

yet, from Exercise 1.1, we have

$$
\operatorname{det}\left(\begin{array}{cc}
I & -A \\
0 & I
\end{array}\right)=\operatorname{det}(I) \operatorname{det}(I)=1 .
$$

Thus,

$$
\operatorname{det}(I-B A)=\operatorname{det}\left(\begin{array}{cc}
I & A \\
B & I
\end{array}\right) .
$$

Now,

$$
\operatorname{det}\left(\begin{array}{cc}
I & A \\
B & I
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
I-A B & 0 \\
B & I
\end{array}\right)=\operatorname{det}(I-A B) .
$$

Therefore

$$
\operatorname{det}(I-B A)=\operatorname{det}(I-A B) .
$$

Note that $(I-B A)$ is a $q \times q$ matrix while $(I-A B)$ is a $p \times p$ matrix. Thus, when one wants to compute the determinant of $(I-A B)$ or $(I-B A)$, $\mathrm{s} /$ he can compare p and q to pick the product ($A B$ or $B A$) with the smaller size.
b) We have to show that $(I-A B)^{-1} A=A(I-B A)^{-1}$.

Proof: Assume that $(I-B A)^{-1}$ and $(I-A B)^{-1}$ exist. Then,

$$
\begin{aligned}
A & =A \cdot I=A(I-B A)(I-B A)^{-1} \\
& =(A-A B A)(I-B A)^{-1} \\
& =(I-A B) A(I-B A)^{-1} \\
\rightarrow(I-A B)^{-1} A & =A(I-B A)^{-1} .
\end{aligned}
$$

This completes the proof.
Exercise 1.6 a) The safest way to find the (element-wise) derivative is by its definition in terms of limits, i.e.

$$
\frac{d}{d t}(A(t) B(t))=\lim _{\Delta t \rightarrow 0} \frac{A(t+\Delta t) B(t+\Delta t)-A(t) B(t)}{\Delta t}
$$

We substitute first order Taylor series expansions

$$
\begin{aligned}
& A(t+\Delta t)=A(t)+\Delta t \frac{d}{d t} A(t)+o(\Delta t) \\
& B(t+\Delta t)=B(t)+\Delta t \frac{d}{d t} B(t)+o(\Delta t)
\end{aligned}
$$

to obtain

$$
\frac{d}{d t}(A(t) B(t))=\frac{1}{\Delta t}\left[A(t) B(t)+\Delta t \frac{d}{d t} A(t) B(t)+\Delta t A(t) \frac{d}{d t} B(t)+\text { h.o.t. }-A(t) B(t)\right] .
$$

Here "h.o.t." stands for the terms

$$
\text { h.o.t. }=\left[A(t)+\Delta t \frac{d}{d t} A(t)\right] o(\Delta t)+o(\Delta t)\left[B(t)+\Delta t \frac{d}{d t} B(t)\right]+o\left(\Delta t^{2}\right),
$$

a matrix quantity, where $\lim _{\Delta t \rightarrow 0}$ h.o.t./ $\Delta t=\mathbf{0}$ (verify). Reducing the expression and taking the limit, we obtain

$$
\frac{d}{d t}[A(t) B(t)]=\frac{d}{d t} A(t) B(t)+A(t) \frac{d}{d t} B(t) .
$$

b) For this part we write the identity $A^{-1}(t) A(t)=I$. Taking the derivative on both sides, we have

$$
\frac{d}{d t}\left[A^{-1}(t) A(t)\right]=\frac{d}{d t} A^{-1}(t) A(t)+A^{-1}(t) \frac{d}{d t} A(t)=\mathbf{0}
$$

Rearranging and multiplying on the right by $A^{-1}(t)$, we obtain

$$
\frac{d}{d t} A^{-1}(t)=-A^{-1}(t) \frac{d}{d t} A(t) A^{-1}(t)
$$

Exercise 1.8 Let $X=\left\{g(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\cdots+\alpha_{M} x^{M} \mid \alpha_{i} \in \mathbb{C}\right\}$.
a) We have to show that the set $B=\left\{1, x, \cdots, x^{M}\right\}$ is a basis for X.

Proof :

1. First, let's show that elements in B are linearly independent. It is clear that each element in B can not be written as a linear combination of each other. More formally,

$$
c_{1}(1)+c_{1}(x)+\cdots+c_{M}\left(x^{M}\right)=0 \leftrightarrow \forall i c_{i}=0
$$

Thus, elements of B are linearly independent.
2. Then, let's show that elements in B span the space X. Every polynomial of order less than or equal to M looks like

$$
p(x)=\sum_{i=0}^{M} \alpha_{i} x^{i}
$$

for some set of α_{i} 's.
Therefore, $\left\{1, x_{1}, \cdots, x^{M}\right\}$ span X.
b) $T: X \rightarrow X$ and $T(g(x))=\frac{d}{d x} g(x)$.

1. Show that T is linear.

Proof:

$$
\begin{aligned}
T\left(a g_{1}(x)+b g_{2}(x)\right) & =\frac{d}{d x}\left(a g_{1}(x)+b g_{2}(x)\right) \\
& =a \frac{d}{d x} g_{1}+b \frac{d}{d x} g_{2} \\
& =a T\left(g_{1}\right)+b T\left(g_{2}\right)
\end{aligned}
$$

Thus, T is linear.
2. $g(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\cdots+\alpha_{M} x^{M}$, so

$$
T(g(x))=\alpha_{1}+2 \alpha_{2} x+\cdots+M \alpha_{M} x^{M-1}
$$

Thus it can be written as follows:

$$
\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 2 & 0 & \cdots & 0 \\
0 & 0 & 0 & 3 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & 0 \\
0 & 0 & 0 & 0 & \cdots & M \\
0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right)\left(\begin{array}{c}
\alpha_{0} \\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\vdots \\
\alpha_{M}
\end{array}\right)=\left(\begin{array}{c}
\alpha_{1} \\
2 \alpha_{2} \\
3 \alpha_{3} \\
\vdots \\
M \alpha_{M} \\
0
\end{array}\right)
$$

The big matrix, M, is a matrix representation of T with respect to basis B. The column vector in the left is a representation of $g(x)$ with respect to B. The column vector in the right is $T(g)$ with respect to basis B.
3. Since the matrix M is upper triangular with zeros along diagonal (in fact M is Hessenberg), the eigenvalues are all 0 ;

$$
\lambda_{i}=0 \forall i=1, \cdots, M+1
$$

4. One eigenvector of M for $\lambda_{1}=0$ must satisfy $M V_{1}=\lambda_{1} V_{1}=0$

$$
V_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

is one eigenvector. Since λ_{i} 's are not distinct, the eigenvectors are not necessarily independent. Thus in order to computer the M others, ones uses the generalized eigenvector formula.

MIT OpenCourseWare
http://ocw.mit.edu

6.241J / 16.338J Dynamic Systems and Control

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

