
SPEED

LIMIT

PER ORDER OF 6.172

Distributed Systems

Saman Amarasinghe

Fall 2010

Final Project
Design review with your Masters

Competition on Dec 9th

Akamai Prize for the winning team

Celebration / demonstration at Akamai HQ

 iPOD nano for each team member!

© Saman Amarasinghe 2008

Scaling Up
Cluster Scale

Data Center Scale

Planet Scale

5

Cluster Scale
Running your program in Multiple Machines

Why?

Parallelism Higher Throughput and Latency

Robustness No single point of failure

Cost savings Multiple PCs are lot cheaper than a mainframe

Programming Issues

Parallel programming with message passing

Robustness tolerating failure

© Saman Amarasinghe 2008

7

Shared vs. Distributed Memory

© Saman Amarasinghe 2008

Memory

Core

L1$

Core

L1$

L2$

Core

L1$

Core

L1$

L2$

Memory

Core

L1$

Core

L1$

L2$

Core

L1$

Core

L1$

L2$

Memory

NIC NIC

Memory Layer Access Time (cycles)

Register 1

Cache 1–10

DRAM Memory 1000

Remote Memory (with MPI) 10000

9

Relative

1

10

100

10

Shared Memory vs. Message Passing
Shared Memory

All Communication via. Memory

Synchronization via. Locks

• Locks get translated into memory actions

Message Passing

Communication via. explicit messages

Synchronization via. synchronous messages

© Saman Amarasinghe 2008

10

Orion 4x4 Send/Recv Times

7From a slide by Duncan Grove @ Adelaide University

Courtesy of Duncan Grove. Used with permission.

Anatomy of a message

© Saman Amarasinghe 2008

Application

OS

NIC

Network Hardware

Application

OS

NIC

Network Hardware

12

Non-Buffered Blocking

Message Passing Operations

When sender and receiver do not reach communication

point at similar times, there can be considerable idling

overheads.

``Introduction to Parallel Computing'', Addison Wesley, 2003

16

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Buffered Blocking

Message Passing Operations

Blocking buffered transfer protocols:

 (a) in the presence of communication hardware with buffers at send and

receive ends

 (b) in the absence of communication hardware, sender interrupts receiver

and deposits data in buffer at receiver end.

``Introduction to Parallel Computing'', Addison Wesley, 2003

18

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Non-Blocking

Message Passing Operations

Non-blocking non-buffered send and receive operations

 (a) in absence of communication hardware;

 (b) in presence of communication hardware.

``Introduction to Parallel Computing'', Addison Wesley, 2003

20

© Addison-Wesley. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

MPI Language
Emerging standard language for cluster programming

Machine independent portable

Features

Each machine has a process

• Its own thread of control

• Its own memory

Each process communicate via messages

• Data that need to be communicated will get packaged into a message

and sent

• Addresses in each process may be different

– Cannot communicate pointers

© Saman Amarasinghe 2008

22

#include "mpi.h"

#include <stdio.h>

int main(int argc, char * argv[])

{

int numtasks, myid, dest, source, rc, count, tag=1;

char inmsg, outmsg='x';

MPI_Status Stat;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

if (myid== 0) {

dest = 1;

source = 1;

rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

} else if (myid== 1) {

dest = 0;

source = 0;

rc = MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

}

rc = MPI_Get_count(&Stat, MPI_CHAR, &count);

MPI_Finalize();

}
© Saman Amarasinghe 2008 From llnl.gov website

23

Courtesy of Lawrence Livermore National Laboratory. Used with permission.

#include "mpi.h"

#include <stdio.h>

int main(int argc, char * argv[])

{

int numtasks, myid, next, prev, buf[2], tag1=1, tag2=2;

MPI_Request recv_reqs[2], send_reqs[2];

MPI_Status stats[4];

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

MPI_Comm_rank(MPI_COMM_WORLD, &myid);

prev = (myid-1)%numtasks;

next = (myid+1)%numtasks;

MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &recv_reqs[0]);

MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &recv_reqs[1]);

MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &send_reqs[0]);

MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &send_reqs[1]);

MPI_Waitall(2, recv_reqs, stats);

{ do some work }

MPI_Waitall(2, send_reqs, stats);

MPI_Finalize();

}

© Saman Amarasinghe 2008 From llnl.gov website

25

Courtesy of Lawrence Livermore National Laboratory. Used with permission.

15

Example: PI in C -1

#include "mpi.h"

#include <math.h>

int main(int argc, char *argv[])

{

int done = 0, n, myid, numprocs, i, rc;

double PI25DT = 3.141592653589793238462643;

double mypi, pi, h, sum, x, a;

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

while (!done) {

if (myid == 0) {

printf("Enter the number of intervals: (0 quits) ");

scanf("%d",&n);

}

MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);

if (n == 0) break;

Intro to MPI by William Gropp & Ewing Lusk, ANL

27

Courtesy of William Gropp. Used with permission.

16

Example: PI in C - 2

h = 1.0 / (double) n;

sum = 0.0;

for (i = myid + 1; i <= n; i += numprocs) {

x = h * ((double)i - 0.5);

sum += 4.0 / (1.0 + x*x);

}

mypi = h * sum;

MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,

MPI_COMM_WORLD);

if (myid == 0)

printf("pi is approximately %.16f, Error is %.16f\n",

pi, fabs(pi - PI25DT));

}

MPI_Finalize();

return 0;

}

Intro to MPI by William Gropp & Ewing Lusk, ANL

28

Courtesy of William Gropp. Used with permission.

Correctness Issues
Deadlocks

Blocking send/receives can lead to deadlocks

Exhaustion of resources can also lead to deadlocks (next slides)

Stale data

Need to make sure that up-to-date information is communicated

Robustness

Single box is very reliable. And when fails it is catastrophic

A cluster has a lot more failures

• But you have a chance of making a program more robust

© Saman Amarasinghe 2008

30

Sources of Deadlocks

Send a large message from process 0 to process 1

 If there is insufficient storage at the destination, the send must wait for

the user to provide the memory space (through a receive)

What happens with

Process 0 Process 1

Send(1) Send(0)

Recv(1) Recv(0)

18

31

• This is called “unsafe” because it depends on the availability of

system buffers
Courtesy of William Gropp. Used with permission.

Intro to MPI by William Gropp & Ewing Lusk, ANL

Some Solutions to the “unsafe”

Problem

Order the operations more carefully:
Process 0 Process 1

Send(1) Recv(0)

Recv(1) Send(0)

19

• Use non-blocking operations:

Process 0 Process 1

Isend(1) Isend(0)

Irecv(1) Irecv(0)

Waitall Waitall

Intro to MPI by William Gropp & Ewing Lusk, ANL

Courtesy of William Gropp. Used with permission.

Performance Issues
Occupancy Costs

Latency Tolerance

Network Bottleneck

© Saman Amarasinghe 2008

32

Occupancy Cost
Each message is expensive

Context switch, buffer copy, network protocol stack processing at the

sender

NIC to OS interrupt and buffer copy, OS to application signal and context

switch and buffer copy at the receiver

Message setup overhead is high

Send small amount of large messages

© Saman Amarasinghe 2008

32

Latency Tolerance
Communication is slow
Memory systems have 100+ to 1 latency to CPU

Cluster interconnects have 10,000+ to 1 latency to CPU

Grid interconnects have 10,000,000+ to 1 latency to CPU

Split operations into a separate initiation and
completion step
Programmers rarely good at writing programs with split operations

33

Latency Tolerance in MPI

Example: Point-to-point “Rendezvous”

 Typical 3-way:

• Sender requests

• Receiver acks with ok to send

• Sender delivers data

 Alternative: “Receiver requests” 2-way

• Receiver sends “request to receive” to designated sender

• Sender delivers data

• MPI_ANY_SOURCE receives interfere

 MPI RMA: sender delivers data to previously agreed location

34

Network Bottlenecks
Network Storms
 Bursty behavior can clog the networks

• TCP timeouts can be very expensive

 Trying to stuff too much data can lead to big slowdowns

• Too much data enters a overloaded switch/router/computer

• A packet gets dropped

• Waits for the packet until timeout

• TCP backoff kicks in adds a big delay

Messages are not streams

 User buffer can be sent in any order

 Allows aggressive (but good-citizen) UDP based communication

• Aggregate acks/nacks

• Compare to “Infinite Window” TCP (receive buffer)

 80%+ of bandwidth achievable on long-haul system

• Contention management can maintain “good Internet behavior”

• Actually reduces network load by reducing the number of acks and retransmits;
makes better use of network bandwidth (use it or lose it)

35

Data Center Scale
Some programs need to scale-up

A lot of users

A lot of data

A lot of processing

© Saman Amarasinghe 2008

37

Examples of Need to Scale
Airline Reservation System

Stock Trading System

Web Page Analysis

Scene Completion

Web Search

37

Example: Web Page Analysis

Experiment

Use web crawler to gather 151M HTML pages weekly 11 times

• Generated 1.2 TB log information

 Analyze page statistics and change frequencies

Fetterly, Manasse, Najork, Wiener (Microsoft, HP),
“A Large-Scale Study of the Evolution of Web
Pages,” Software-Practice & Experience, 2004

From: www.cs.cmu.edu/~bryant/presentations/DISC-FCRC07.ppt

38

© John Wiley & Sons. All rights reserved. This content is excluded from our
Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Slide courtesy of Randal Bryant. Used with permission.

http://ocw.mit.edu/fairuse

Example: Scene Completion

Image Database Grouped by

Semantic Content

 30 different Flickr.com groups

 2.3 M images total (396 GB).

Select Candidate Images Most

Suitable for Filling Hole

 Classify images with gist scene detector

[Torralba]

 Color similarity

 Local context matching

Computation

 Index images offline

 50 min. scene matching, 20 min. local

matching, 4 min. compositing

 Reduces to 5 minutes total by using 5

machines

Extension

 Flickr.com has over 500 million images …

Hays, Efros (CMU), “Scene Completion Using

Millions of Photographs” SIGGRAPH, 2007

From: www.cs.cmu.edu/~bryant/presentations/DISC-FCRC07.ppt

39

Images courtesy of James Hays and Alexei Efros. Used with permission.

Slide courtesy of Randal Bryant. Used with permission.

Example: Web Search

2000+ processors participate in a single query

200+ terabyte database

1010 total clock cycles

0.1 second response time

5¢ average advertising revenue

From: www.cs.cmu.edu/~bryant/presentations/DISC-FCRC07.ppt

40

Slide courtesy of Randal Bryant. Used with permission.

Google’s Computing Infrastructure

System

~ 3 million processors in clusters of ~2000 processors each

Commodity parts

• x86 processors, IDE disks, Ethernet communications

• Gain reliability through redundancy & software management

Partitioned workload

• Data: Web pages, indices distributed across processors

• Function: crawling, index generation, index search, document retrieval,

Ad placement

Similar systems at Microsoft & Yahoo

Barroso, Dean, Hölzle, “Web Search for a Planet:

The Google Cluster Architecture” IEEE Micro 2003

From: www.cs.cmu.edu/~bryant/presentations/DISC-FCRC07.ppt

41

Slide courtesy of Randal Bryant. Used with permission.

Google’s Programming Model

MapReduce

Map computation across many objects

• E.g., 1010 Internet web pages

Aggregate results in many different ways

System deals with issues of resource allocation & reliability

M

x1

M

x2

M

x3

M

xn

Reducek1

Map

k1
kr

Key-Value
Pairs

42

Dean & Ghemawat: “MapReduce: Simplified Data
Processing on Large Clusters”, OSDI 2004

Programming Model

Borrows from functional programming

Users implement interface of two functions:

map (in_key, in_value) ->

(out_key, intermediate_value) list

reduce (out_key, intermediate_value list) ->

out_value list

32

From: Mass Data Processing Technology on Large
Scale Clusters Summer, 2007, Tsinghua University

43

Courtesy of Tsinghua University and Google. Used with permission.

map

Records from the data source

(lines out of files, rows of a database, etc) are fed

into the map function as key-value pairs: e.g.,

<filename, line>.

map() produces

one or more intermediate values

along with an output key from the input.

33

From: Mass Data Processing Technology on Large
Scale Clusters Summer, 2007, Tsinghua University

44

Courtesy of Tsinghua University and Google. Used with permission.

reduce

Combine data

After the map phase is over,

all the intermediate values for a given output key are

combined together into a list

reduce() combines those intermediate values into

one or more final values for that same output key

(in practice, usually only one final value per key)

34

From: Mass Data Processing Technology on Large
Scale Clusters Summer, 2007, Tsinghua University

45

Courtesy of Tsinghua University and Google. Used with permission.

Architecture

35

Data store 1 Data store n
map

(key 1,
values...)

(key 2,
values...)

(key 3,
values...)

map

(key 1,
values...)

(key 2,
values...)

(key 3,
values...)

Input key*value
pairs

Input key*value
pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,
intermediate

values

key 2,
intermediate

values

key 3,
intermediate

values

final key 1
values

final key 2
values

final key 3
values

...

From: Mass Data Processing Technology on Large
Scale Clusters Summer, 2007, Tsinghua University

46

Courtesy of Tsinghua University and Google. Used with permission.

Parallelism
map() functions

run in parallel, creating different intermediate values from
different input data sets

reduce() functions

also run in parallel, each working on a different output key

All values are processed independently

Bottleneck:

reduce phase can’t start until map phase is completely
finished.

36

From: Mass Data Processing Technology on Large
Scale Clusters Summer, 2007, Tsinghua University

46

Courtesy of Tsinghua University and Google. Used with permission.

Example: Count word

occurrences
map(String input_key, String input_value):

// input_key: document name

// input_value: document contents

for each word w in input_value:

EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):

// output_key: a word

// output_values: a list of counts

int result = 0;

for each v in intermediate_values:

result += ParseInt(v);

Emit(AsString(result));

37

From: Mass Data Processing Technology on Large
Scale Clusters Summer, 2007, Tsinghua University

47

Courtesy of Tsinghua University and Google. Used with permission.

How to Scale?
Distribute

Parallelize

Distribute data

Approximate

Get to a sufficiently close answer, not the exact

A little stale data might be sufficient

Transact

 If exactness is required, use transactions

© Saman Amarasinghe 2008

48

Planet Scale
Some programs need to scale-up

A lot of users

A lot of data

A lot of processing

Examples:

Seti@Home

Napster

BitTorrent

© Saman Amarasinghe 2008

48

Scaling Planet Wide
Truly Distributed

No global operations

No single bottleneck

Distributed view stale data

Adaptive load distribution is a must

© Saman Amarasinghe 2008

49

Case Study –The Bonsai System

Case study from VMware Inc.

A Prototype for “Deduplication” at Global Scale

Why? For Moving Virtual Machines Across the World

© Saman Amarasinghe 2008

What is the Virtualization Revolution

Decouple the “machine” from the physical machine and make it a

file

Virtual Machines can be..

Replicated

Moved

Played

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

What is the Virtualization Revolution

Decouple the “machine” from the physical machine and make it a

file

Virtual Machines can be..

Replicated

Moved

Played

Stored

© Source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

Cloud Computing
Vision: Global marketplace of computing power

Work migrates as needed

To find more computing resources

To be near data and/or users

To find a cheaper provider of resources

To amortize the risk of catastrophic failure

Issues

Mostly applications are encapsulated

as virtual machines

They are hefty to move

© Saman Amarasinghe 2008

Time to Move a VM Disk file

A typical Boston desktop to Palo Alto desktop (2mbps network bandwidth) copying of a VM file

 s /

w w

o r Fast Compression (Zip, default)

d
2

0
0

0

e

W
in rv SQ

L
es No compression

r s e
w rv Bonsai

o
d s

e
W

in
2

0
0

0

High compression (p7zip)

9
ra

o Fast Compression (Zip, default)

d
Fe

No compression

 8
.0

4

Bonsai

tu
n

u
b High compression (p7zip)

U
7

.1
0

tu Fast Compression (Zip, default)

n
u

U
b

No compression

0 500 1000 1500 2000 2500 3000 3500

Compression Transmission Decompression

Time to Move a VM Disk file

A typical Boston desktop to Palo Alto desktop (2mbps network bandwidth) copying of a VM file

 s /

w w

o r Fast Compression (Zip, default)

d
2

0
0

0

e

W
in rv SQ

L
es No compression

r s e
w rv Bonsai

o
d s

e
W

in
2

0
0

0

High compression (p7zip)

9
ra

o Fast Compression (Zip, default)

d
Fe

No compression

 8
.0

4

Bonsai

tu
n

u
b High compression (p7zip)

U
7

.1
0

tu Fast Compression (Zip, default)

n
u

U
b

No compression

0 500 1000 1500 2000 2500 3000 3500

Compression Transmission Decompression

Data Redundancy – A Key Observation

Observation 1: Large part of each VMDK is executables

Observation 2: A few applications dominate the world and are in

every machine (eg: XP and Office on desktops)

Observation 3: Substantial redundancy even within a single disk

(eg: DLL cache, install and repair info)

Observation 4: Many Disks have a lot of zero blocks!

0

2,000,000

4,000,000

6,000,000

8,000,000

10,000,000

12,000,000

14,000,000

1 2 3 4 5 6 7 8 9

of

 4
K

 b
lo

ck
s

of VMs

nonzero blocks

unique blocks

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9

%

U
n

iq
u

e
 b

lo
c

k
s

of VMs

Basic De-Duplication

A

B

A

B

A

C

A

C

A

B

C

D

A

B

A

D

A lot of data redundancy

B

D

Basic De-Duplication

A

B

A

B

A

C

A

C

A

B

C

D

A

B

A

D

A lot of data redundancy

Break them into blocks

Eg: 4K byte disk blocks

B

D

Basic De-Duplication

A

B

A

B

A

C

A

C

A

B

C

D

A

B

A

D

A lot of data redundancy

Break them into blocks

Eg: 4K byte disk blocks

Calculate a hash value per

block

Eg: SHA-256 hash (32 bytes)

B

D

ab ab ac

ac abcd

abadbd

Basic De-Duplication

ab

A

B

ab

A

B

ac

A

C

ac

A

C

ab

A

B

cd

C

D

ab

A

B

ad

A

D

bd

A lot of data redundancy

Break them into blocks

Eg: 4K byte disk blocks

Calculate a hash value per

block

Eg: SHA-256 hash (32 bytes)

Identify similar blocks by

comparing the hash values
B

D

Basic De-Duplication

ab

A

B

ab

A

B

ac

A

C

ac

A

C

ab

A

B

cd

C

D

ab

A

B

ad

A

D

bd

A lot of data redundancy

Break them into blocks

Eg: 4K byte disk blocks

Calculate a hash value per

block

Eg: SHA-256 hash (32 bytes)

Identify similar blocks by

comparing the hash values
B

Eliminate copies and keep only D
the hash as an index

Basic De-Duplication

A lot of data redundancy

Break them into blocks

Eg: 4K byte disk blocks

Calculate a hash value per

block

Eg: SHA-256 hash (32 bytes)

Identify similar blocks by

comparing the hash values

Eliminate copies and keep only

the hash as an index

Much more compact storage

Recipe table and common block store can be separated

ab ab ac

A

B

A

C

ac abcd

C

D

abadbd

A

D

B

D

Recipe

Common Block Store

Inter. vs. Intra. Deduplication

Recipe and Common Block Store in same

“system” Traditional deduplication

Multiple Recipes for One Common Block Store

 Pro: Single copy of common data blocks

across systems Higher compression

Cons: Lack of universal mobility

Cons: Inability to guarantee data availability

Cons: Inability to guarantee data integrity

Who owns and manages the Common Block Store?

Bonsai: A Global Store for Common Disk Blocks

Take Advantage of the Monoculture

Store the common blocks in a global store

“Google” or “Akamai” or “VeriSign” for disk blocks

Bonsai Flow

Same original block from all the systems will have the identical encrypted block

 Gets deduplicated

No one can read the content of the block unless the original block was seen at one

time

 Requires the hash key to read the text

 Requires the original block to calculate the hash key

Search by UID No possibility of getting the wrong block due to a hash collision

Private
key

Encryption

Compression

Hash 2
Priv. key

UID

Hash 1

Hash key

UID

?

Bonsai Flow

UID
UID

Priv key

Decryption Decompression

Private
key

Encryption

Compression

Hash 2
Priv. key

UID

Hash 1

Hash key

UID

Hash Key vs UID

Hash Key Unique ID

 Optional hash check + full page check

• Full page check can be done later

• No errors possible in a match

 UID layout has good special locality

 Central/global authority to assign UIDs

• Guarantee block integrity and availability

 Hash check is inexpensive

 1 in 18,446,744,073,709,600,000 (264)

chances that a different block will match

the hash key

 Lookup is random costly

 Can be a P2P system

Reliability

Efficiency

Integrity

Compression Ratios

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

V
ir

tu
al

 A
p

p
lia

n
ce

s
V

M
 w

it
h

 A
p

p
lic

at
io

n

P
2

V

V
ir

tu
al

 A
p

p
lia

n
ce

s
V

M
 w

it
h

 A
p

p
lic

at
io

n

V
m

st
o

re
 a

t
C

am
b

ri
d

ge

D
et

er
m

in
a

V
m

s

V
m

st
o

re
 a

t
C

am
b

ri
d

ge

V
ir

tu
al

 A
p

p
lia

n
ce

s
V

M
 w

it
h

 A
p

p
lic

at
io

n

V
ir

tu
al

 A
p

p
lia

n
ce

s
b

as
e

V
M

.

V
ir

tu
al

 A
p

p
lia

n
ce

s
V

M
 w

it
h

 A
p

p
lic

at
io

n

V
ir

tu
al

 A
p

p
lia

n
ce

s
V

M
 w

it
h

 A
p

p
lic

at
io

n

V
ir

tu
al

 A
p

p
lia

n
ce

s
b

as
e

V
M

.

D
et

er
m

in
a

V
m

s

D
et

er
m

in
a

V
m

s

V
m

st
o

re
 a

t
C

am
b

ri
d

ge

D
et

er
m

in
a

V
m

s

D
et

er
m

in
a

V
m

s

D
et

er
m

in
a

V
m

s

D
et

er
m

in
a

V
m

s

V
m

st
o

re
 a

t
C

am
b

ri
d

ge

D
et

er
m

in
a

V
m

s

D
et

er
m

in
a

V
m

s

D
et

er
m

in
a

V
m

s

B
as

e
V

m
s

gr
ab

b
ed

 f
ro

m
 E

xi
t

1
1

5

B
as

e
V

m
s

gr
ab

b
ed

 f
ro

m
 E

xi
t

1
1

6

V
m

st
o

re
 a

t
C

am
b

ri
d

ge

D
et

er
m

in
a

V
m

s

V
ir

tu
al

 A
p

p
lia

n
ce

s
V

M
 w

it
h

 A
p

p
lic

at
io

n

V
m

st
o

re
 a

t
C

am
b

ri
d

ge

V
ir

tu
al

 A
p

p
lia

n
ce

s
b

as
e

V
M

.

B
as

e
V

m
s

gr
ab

b
ed

 f
ro

m
 E

xi
t

1
1

7

B
as

e
V

m
s

gr
ab

b
ed

 f
ro

m
 E

xi
t

1
1

8

V
m

st
o

re
 a

t
C

am
b

ri
d

ge

Centos Fedore Red hat Suse Ubuntu Windows NT Windows 2000 windows 2003 Windows XP

End-to-End Time to Move a VMDK

A typical Boston desktop to Palo Alto desktop (2mbps network bandwidth) copying of a VMDK

0 500 1000 1500 2000 2500 3000 3500

No compression

Fast Compression (Zip, default)

High compression (p7zip)

Bonsai

No compression

Fast Compression (Zip, default)

High compression (p7zip)

Bonsai

No compression

Fast Compression (Zip, default)

U
b

u
n

tu
 7

.1
0

U
b

u
n

tu
 8

.0
4

Fe
d

o
ra

 9
W

in
d

o
w

s
2

0
0

0
 s

er
ve

r

W
in

d
o

w
s

2
0

0
0

se

rv
er

 w
/

SQ
L

Compression Transmission Decompression

Different Levels of Compression
To

ta
l B

yt
es

0

2,000,000,000

4,000,000,000

6,000,000,000

8,000,000,000

10,000,000,000

12,000,000,000

Total Size of VM plus compressing
blocks

plus local
deduplication

plus global store

Contribution of Each Component to Compression

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ubuntu 7.10 Ubuntu 8.04 Fedorra core 9 with
512MB

Windows 2000
server Has SQL

Server and Sygate
installed.

Windows 2000
server

%
 o

f
B

lo
c

k
s

Server Hits

Duplicates Hit at the server

Local Dedup Blocks

Zero Block

Compressed Blocks

Contribution of Each Component to Compression

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Ubuntu 7.10 Ubuntu 8.04 Fedorra core 9 with
512MB

Windows 2000
server Has SQL

Server and Sygate
installed.

Windows 2000
server

%
 o

f
B

lo
c

k
s

Server Hits

Duplicates Hit at the server

Local Dedup Blocks

Zero Block

Compressed Blocks

Size of the compressed blocks > 99% of the size of the Bonsai VMDK

Technical Challenges

Adaptive Store

Robust and Scalable Truly-Global Store

Integration with the Product Line

Improve the Compression Rate

Security and Privacy

MIT OpenCourseWare
http://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

