
© 2010 Charles E. Leiserson 1

6.172
Performance
Engineering of
Software Systems

LECTURE 15

Nondeterministic
Programming

Charles E. Leiserson

November 2, 2010

© 2010 Charles E. Leiserson 2

Determinism

Definition. A program is deterministic on
a given input if every memory location is
updated with the same sequence of values
in every execution.
∙ The program always behaves the same way.
∙ Two different memory locations may be updated

in different orders, but each location always sees
the same sequence of updates.

Advantage: debugging!

© 2010 Charles E. Leiserson 3

Rule of Thumb

Always write
deterministic programs.

© 2010 Charles E. Leiserson 4

Rule of Thumb

Always write
deterministic programs,

unless you can’t!

© 2010 Charles E. Leiserson 5

OUTLINE

•Mutual Exclusion
• Implementation of Mutexes
•Locking Anomalies

•Deadlock
•Convoying
•Contention

© 2010 Charles E. Leiserson 6

OUTLINE

•Mutual Exclusion
• Implementation of Mutexes
•Locking Anomalies

•Deadlock
•Convoying
•Contention

© 2010 Charles E. Leiserson 7

81

Hash Table

92 39 51 34

16

42 33 12

15 94 26 28

77 75

Insert x into table
x:

slot = hash(x->key);

x->next = table[slot];

table[slot] = x;

1

2

3

© 2010 Charles E. Leiserson 8

81

Concurrent Hash Table

92 39 51 34

16

42 33 12

15 94 26 28

77 75

x:

37y:

slot = hash(x->key);

x->next = table[slot];

table[slot] = x;

slot = hash(y->key);

y->next = table[slot];

table[slot] = y;

RACE
BUG!

1

2

6

3

4

5

© 2010 Charles E. Leiserson 9

Critical Sections

Definition. A critical section is a piece of
code that accesses a shared data structure
that must not be accessed by two or more
threads at the same time (mutual
exclusion).

© 2010 Charles E. Leiserson 10

Mutexes

Definition. A mutex is an object with lock and
unlock member functions. An attempt by a thread
to lock an already locked mutex causes that thread
to block (i.e., wait) until the mutex is unlocked.

slot = hash(x->key);

table[slot].L.lock();

x->next = table[slot].head;

table[slot].head = x;

table[slot].L.unlock();

Modified code: Each slot is a struct with a mutex

L and a pointer head to the slot contents.

critical
section

© 2010 Charles E. Leiserson 11

Recall: Determinacy Races

Definition. A determinacy race occurs when
two logically parallel instructions access the
same memory location and at least one of the
instructions performs a write.

∙ A program execution with no determinacy races
means that the program is deterministic on that input.

∙ The program always behaves the same on that input,
no matter how it is scheduled and executed.

∙ If determinacy races exist in an ostensibly
deterministic program (e.g., a program with no
mutexes), Cilkscreen guarantees to find such a race.

© 2010 Charles E. Leiserson 12

Data Races

Definition. A data race occurs when two
logically parallel instructions holding no
locks in common access the same memory
location and at least one of the instructions
performs a write.

Cilkscreen understands locks and will not report a
determinacy race unless it is also a data race.

WARNING: Codes that use locks are
nondeterministic by intention, and
they weaken Cilkscreen’s guarantee
unless critical sections ―commute.‖

© 2010 Charles E. Leiserson 13

No Data Races ≠ No Bugs

Example

slot = hash(x->key);

table[slot].L.lock();

x->next = table[slot].head;

table[slot].L.unlock();

table[slot].L.lock();

table[slot].head = x;

table[slot].L.unlock();

Nevertheless, the presence of mutexes and
the absence of data races at least means that
the programmer thought about the issue.

© 2010 Charles E. Leiserson 14

Benign Races

Example: Identify the set of digits in an array.

A: 4, 1, 0, 4, 3, 3, 4, 6, 1, 9, 1, 9, 6, 6, 6, 3, 4

for (int j=0; i<10; ++i) {

digits[j] = 0;

}

cilk_for (int i=0; i<N; ++i) {

digits[A[i]] = 1; //benign race

}

1 1 0 1 1 1 1 0 0digits: 1

0 1 2 3 4 5 6 7 8 9

CAUTION: This code only works correctly if the
hardware writes the array elements atomically —
e.g., it races for byte values on some architectures.

© 2010 Charles E. Leiserson 15

Benign Races

Example: Identify the set of digits in an array.

A: 4, 1, 0, 4, 3, 3, 4, 6, 1, 9, 1, 9, 6, 6, 6, 3, 4

for (int j=0; i<10; ++i) {

digits[j] = 0;

}

cilk_for (int i=0; i<N; ++i) {

digits[A[i]] = 1; //benign race

}

1 1 0 1 1 1 1 0 0digits: 1

0 1 2 3 4 5 6 7 8 9

Fake locks allow you to communicate to
Cilkscreen that a race is intentional.

© 2010 Charles E. Leiserson 16

OUTLINE

•Mutual Exclusion
• Implementation of Mutexes
•Locking Anomalies

•Deadlock
•Convoying
•Contention

© 2010 Charles E. Leiserson 17

Properties of Mutexes

∙ Yielding/spinning
A yielding mutex returns control to the operating
system when it blocks. A spinning mutex consumes
processor cycles while blocked.

∙ Reentrant/nonreentrant
A reentrant mutex allows a thread that is already
holding a lock to acquire it again. A nonreentrant
mutex deadlocks if the thread attempts to reacquire
a mutex it already holds.

∙ Fair/unfair
A fair mutex puts blocked threads on a FIFO queue,
and the unlock operation unblocks the thread that
has been waiting the longest. An unfair mutex lets
any blocked thread go next.

© 2010 Charles E. Leiserson 18

Simple Spinning Mutex

Spin_Mutex:

cmp 0, mutex ; Check if mutex is free

je Get_Mutex

pause ; x86 hack to unconfuse pipeline

jmp Spin_Mutex

Get_Mutex:

mov 1, %eax

xchg mutex, %eax ; Try to get mutex

cmp 0, eax ; Test if successful

jne Spin_Mutex

Critical_Section:

<critical-section code>

mov 0, mutex ; Release mutex

Key property: xchg is an atomic exchange.

© 2010 Charles E. Leiserson 19

Simple Yielding Mutex

Spin_Mutex:

cmp 0, mutex ; Check if mutex is free

je Get_Mutex

call pthread_yield ; Yield quantum

jmp Spin_Mutex

Get_Mutex:

mov 1, %eax

xchg mutex, %eax ; Try to get mutex

cmp 0, eax ; Test if successful

jne Spin_Mutex

Critical_Section:

<critical-section code>

mov 0, mutex ; Release mutex

© 2010 Charles E. Leiserson 20

Competitive Mutex

Competing goals:
∙ To claim mutex soon after it is released.
∙ To behave nicely and waste few cycles.

IDEA: Spin for a while, and then yield.

How long to spin?
As long as a context switch takes. Then, you
never wait longer than twice the optimal time.
∙ If the mutex is released while spinning, optimal.
∙ If the mutex is released after yield, ≤ 2 × optimal.

Randomized algorithm: e/(e–1)-competitive.

© 2010 Charles E. Leiserson 21

OUTLINE

•Mutual Exclusion
• Implementation of Mutexes
•Locking Anomalies

•Deadlock
•Convoying
•Contention

© 2010 Charles E. Leiserson 22

OUTLINE

•Mutual Exclusion
• Implementation of Mutexes
•Locking Anomalies

•Deadlock
•Convoying
•Contention

© 2010 Charles E. Leiserson 23

Deadlock

Holding more than one lock at a time can
be dangerous:

A.lock();

B.lock();

critical section
B.unlock();

A.unlock();

B.lock();

A.lock();

critical section

Thread 1 Thread 2

A.unlock();

B.unlock();

The ultimate loss of performance!

1 2

© 2010 Charles E. Leiserson 24

Conditions for Deadlock

1. Mutual exclusion — Each thread claims
exclusive control over the resources it
holds.

2. Nonpreemption — Each thread does
not release the resources it holds until
it completes its use of them.

3. Circular waiting — A cycle of threads
exists in which each thread is blocked
waiting for resources held by the next
thread in the cycle.

© 2010 Charles E. Leiserson 25

Dining Philosophers

C.A.R. Hoare Edsger Dijkstra
Hoare photo © David Monniaux. CC by-sa. Dijkstra photo © source unknown. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Illustrative story of deadlock told by Charles
Antony Richard Hoare based on an examination
question by Edsgar Dijkstra. The story has been
embellished over the years by many retellers.

http://ocw.mit.edu/fairuse

© 2010 Charles E. Leiserson 26

Dining Philosophers

while (1) {

think();

chopstick[i].L.lock();

chopstick[(i+1)%n].L.lock();

eat();

chopstick[i].L.unlock();

chopstick[(i+1)%n].L.unlock();

}

Each of n philosophers needs
the two chopsticks on
either side of his/her
plate to eat his/her
noodles.

Philosopher i

Dining philosophers image © source unknown.
All rights reserved. This content is excluded from
our Creative Commons license. For more
information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

© 2010 Charles E. Leiserson 27

Dining Philosophers

while (1) {

think();

chopstick[i].L.lock();

chopstick[(i+1)%n].L.lock();

eat();

chopstick[i].L.unlock();

chopstick[(i+1)%n].L.unlock();

}

Each of n philosophers needs
the two chopsticks on
either side of his/her
plate to eat his/her
noodles.

Philosopher i

One day they all pick
up their left chopsticks

simultaneously.

Starving

Dining philosophers image © source unknown.
All rights reserved. This content is excluded from
our Creative Commons license. For more
information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

© 2010 Charles E. Leiserson 28

Preventing Deadlock

Theorem. Suppose that we can linearly
order the mutexes L1 ⋖ L2 ⋖ ⋯ ⋖ Ln so that
whenever a thread holds a mutex Li and
attempts to lock another mutex Lj , we
have Li ⋖ Lj . Then, no deadlock can occur.

Proof. Suppose that a cycle of waiting exists.
Consider the thread in the cycle that holds the
―largest‖ mutex Lmax in the ordering, and suppose
that it is waiting on a mutex L held by the next
thread in the cycle. Then, we must have Lmax ⋖ L .
Contradiction. ∎

© 2010 Charles E. Leiserson 29

Dining Philosophers

Philosopher i
while (1) {

think();

chopstick[min(i,(i+1)%n)].L.lock();

chopstick[max(i,(i+1)%n)].L.lock();

eat();

chopstick[i].L.unlock();

chopstick[(i+1)%n].L.unlock();

}

Dining philosophers image © source unknown.
All rights reserved. This content is excluded from
our Creative Commons license. For more
information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

© 2010 Charles E. Leiserson 30

Deadlocking Cilk++

void main() {

cilk_spawn foo();

L.lock();

cilk_sync;

L.unlock();

}

void foo() {

L.lock();

L.unlock();

}

[]

[]

∙Don’t hold mutexes across cilk_sync’s!
∙Hold mutexes only within strands.
∙As always, try to avoid using mutexes
(but that’s not always possible).

1

2
foo() waits.

main()

waits.
3

© 2010 Charles E. Leiserson 31

OUTLINE

•Mutual Exclusion
• Implementation of
Mutexes

•Locking Anomalies
•Deadlock
•Convoying
•Contention

© 2010 Charles E. Leiserson 32

Performance Bug in MIT-Cilk

When random work-stealing, each thief
grabs a mutex on its victim’s deque:
∙ If the victim’s deque is empty, the thief releases

the mutex and tries again at random.
∙ If the victim’s deque contains work, the thief

steals the topmost frame and then releases the
mutex.

PROBLEM: At start-up, most thieves quickly
converge on the worker P0 containing the
initial strand, creating a convoy.

© 2010 Charles E. Leiserson 33

Convoying

© 2010 Charles E. Leiserson 34

Convoying

© 2010 Charles E. Leiserson 35

Convoying

© 2010 Charles E. Leiserson 36

Convoying

© 2010 Charles E. Leiserson 37

Convoying

The work now gets distributed slowly as
each thief serially obtains P0’s mutex.

© 2010 Charles E. Leiserson 38

Solving the Convoying Problem

Use the nonblocking function try_lock(),
rather than lock():
∙ try_lock() attempts to acquire the

mutex and returns a flag indicating
whether it was successful, but it does not
block on an unsuccessful attempt.

In Cilk++, when a thief fails to acquire a
mutex, it simply tries to steal again at
random, rather than blocking.

© 2010 Charles E. Leiserson 39

OUTLINE

•Mutual Exclusion
• Implementation of Mutexes
•Locking Anomalies

•Deadlock
•Convoying
•Contention

© 2010 Charles E. Leiserson 40

Summing Example

int compute(const X& v);

int main()

{

const std::size_t n = 1000000;

extern X myArray[n];

// ...

int result = 0;

for (std::size_t i = 0; i < n; ++i)

{

result += compute(myArray[i]);

}

std::cout << "The result is: "

<< result

<< std::endl;

return 0;

}

© 2010 Charles E. Leiserson 41

Summing Example in Cilk++

int compute(const X& v);

int main()

{

const std::size_t n = 1000000;

extern X myArray[n];

// ...

int result = 0;

cilk_for (std::size_t i = 0; i < n; ++i)

{

result += compute(myArray[i]);

}

std::cout << "The result is: "

<< result

<< std::endl;

return 0;
Race!

}

Work = Θ(n)
Span = Θ(lgn)
Running time =

O(n/P + lgn)

© 2010 Charles E. Leiserson 42

Mutex Solution

int compute(const X& v);

int main()

{

const std::size_t n = 1000000;

extern X myArray[n];

// ...

int result = 0;

mutex L;

cilk_for (std::size_t i = 0; i < n; ++i)

{

L.lock();

result += compute(myArray[i]);

L.unlock();

}

std::cout << "The result is: "

<< result

<< std::endl;

return 0;

}

Lock
contention
⇒ no
parallelism!

Work = Θ(n)
Span = Θ(lgn)
Running time =
Ω(n)

© 2010 Charles E. Leiserson 43

Scheduling with Mutexes

Greedy scheduler:
TP ≤ T1/P + T∞ + B ,

where B is the bondage — the total time of
all critical sections.

This upper bound is weak, especially if
many small mutexes each protect different
critical regions. Little is known theoretically
about lock contention.

© 2010 Charles E. Leiserson 44

Rule of Thumb

Always write
deterministic programs.

© 2010 Charles E. Leiserson 45

Rule of Thumb

Always write
deterministic programs,

unless you can’t!

MIT OpenCourseWare
http://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

