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Determinism

Definition. A program is deterministic on 
a given input if every memory location is 
updated with the same sequence of values 
in every execution.
∙ The program always behaves the same way.
∙ Two different memory locations may be updated 

in different orders, but each location always sees 
the same sequence of updates.

Advantage: debugging!
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Rule of Thumb

Always write
deterministic programs. 
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Rule of Thumb

Always write
deterministic programs, 

unless you can’t!
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OUTLINE

•Mutual Exclusion
• Implementation of Mutexes
•Locking Anomalies

•Deadlock
•Convoying
•Contention
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81

Hash Table

92 39 51 34

16

42 33 12

15 94 26 28

77 75

Insert x into table
x:

slot = hash(x->key);

x->next = table[slot];

table[slot] = x;
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81

Concurrent Hash Table

92 39 51 34

16

42 33 12

15 94 26 28

77 75

x:

37y:

slot = hash(x->key);

x->next = table[slot];

table[slot] = x;

slot = hash(y->key);

y->next = table[slot];

table[slot] = y;

RACE 
BUG!

1
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Critical Sections

Definition. A critical section is a piece of 
code that accesses a shared data structure 
that must not be accessed by two or more 
threads at the same time (mutual 
exclusion ).
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Mutexes

Definition.  A mutex is an object with lock and 
unlock member functions.  An attempt by a thread 
to lock an already locked mutex causes that thread 
to block (i.e., wait) until the mutex is unlocked.

slot = hash(x->key);

table[slot].L.lock();

x->next = table[slot].head;

table[slot].head = x;

table[slot].L.unlock();

Modified code: Each slot is a struct with a mutex

L and a pointer head to the slot contents.

critical
section
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Recall: Determinacy Races

Definition. A determinacy race occurs when 
two logically parallel instructions access the 
same memory location and at least one of the 
instructions performs a write.

∙ A program execution with no determinacy races 
means that the program is deterministic on that input.

∙ The program always behaves the same on that input, 
no matter how it is scheduled and executed.

∙ If determinacy races exist in an ostensibly 
deterministic program (e.g., a program with no 
mutexes), Cilkscreen guarantees to find such a race.
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Data Races

Definition. A data race occurs when two 
logically parallel instructions holding no 
locks in common access the same memory 
location and at least one of the instructions 
performs a write.

Cilkscreen understands locks and will not report a 
determinacy race unless it is also a data race.

WARNING: Codes that use locks are 
nondeterministic by intention, and 
they weaken Cilkscreen’s guarantee 
unless critical sections ―commute.‖  
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No Data Races ≠ No Bugs

Example

slot = hash(x->key);

table[slot].L.lock();

x->next = table[slot].head;

table[slot].L.unlock();

table[slot].L.lock();

table[slot].head = x;

table[slot].L.unlock();

Nevertheless, the presence of mutexes and 
the absence of data races at least means that 
the programmer thought about the issue.
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Benign Races

Example: Identify the set of digits in an array.

A:  4, 1, 0, 4, 3, 3, 4, 6, 1, 9, 1, 9, 6, 6, 6, 3, 4

for (int j=0; i<10; ++i) {

digits[j] = 0;

}

cilk_for (int i=0; i<N; ++i) {

digits[A[i]] = 1;  //benign race

}

1 1 0 1 1 1 1 0 0digits: 1

0 1 2 3 4 5 6 7 8 9

CAUTION: This code only works correctly if the 
hardware writes the array elements atomically —
e.g., it races for byte values on some architectures.
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Benign Races

Example: Identify the set of digits in an array.

A:  4, 1, 0, 4, 3, 3, 4, 6, 1, 9, 1, 9, 6, 6, 6, 3, 4

for (int j=0; i<10; ++i) {

digits[j] = 0;

}

cilk_for (int i=0; i<N; ++i) {

digits[A[i]] = 1;  //benign race

}

1 1 0 1 1 1 1 0 0digits: 1

0 1 2 3 4 5 6 7 8 9

Fake locks allow you to communicate to 
Cilkscreen that a race is intentional.
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Properties of Mutexes

∙ Yielding/spinning
A yielding mutex returns control to the operating 
system when it blocks.  A spinning mutex consumes 
processor cycles while blocked. 

∙ Reentrant/nonreentrant
A reentrant mutex allows a thread that is already 
holding a lock to acquire it again.  A nonreentrant
mutex deadlocks if the thread attempts to reacquire 
a mutex it already holds.

∙ Fair/unfair 
A fair mutex puts blocked threads on a FIFO queue, 
and the unlock operation unblocks the thread that 
has been waiting the longest.  An unfair mutex lets 
any blocked thread go next.
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Simple Spinning Mutex

Spin_Mutex:

cmp 0, mutex ; Check if mutex is free

je Get_Mutex

pause ; x86 hack to unconfuse pipeline

jmp Spin_Mutex

Get_Mutex:

mov 1, %eax

xchg mutex, %eax ; Try to get mutex

cmp 0, eax ; Test if successful

jne Spin_Mutex

Critical_Section:

<critical-section code>

mov 0, mutex ; Release mutex

Key property: xchg is an atomic exchange. 
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Simple Yielding Mutex

Spin_Mutex:

cmp 0, mutex ; Check if mutex is free

je Get_Mutex

call pthread_yield ; Yield quantum

jmp Spin_Mutex

Get_Mutex:

mov 1, %eax

xchg mutex, %eax ; Try to get mutex

cmp 0, eax ; Test if successful

jne Spin_Mutex

Critical_Section:

<critical-section code>

mov 0, mutex ; Release mutex
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Competitive Mutex

Competing goals:
∙ To claim mutex soon after it is released.
∙ To behave nicely and waste few cycles.

IDEA: Spin for a while, and then yield.

How long to spin?
As long as a context switch takes.  Then, you 
never wait longer than twice the optimal time.
∙ If the mutex is released while spinning, optimal.
∙ If the mutex is released after yield, ≤ 2 × optimal.

Randomized algorithm: e/(e–1)-competitive.
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Deadlock

Holding more than one lock at a time can 
be dangerous:

A.lock();

B.lock();

critical section
B.unlock();

A.unlock();

B.lock();

A.lock();

critical section

Thread 1 Thread 2

A.unlock();

B.unlock();

The ultimate loss of performance!

1 2
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Conditions for Deadlock

1. Mutual exclusion — Each thread claims 
exclusive control over the resources it 
holds.

2. Nonpreemption — Each thread does 
not release the resources it holds until 
it completes its use of them.

3. Circular waiting — A cycle of threads 
exists in which each thread is blocked 
waiting for resources held by the next 
thread in the cycle.
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Dining Philosophers

C.A.R. Hoare Edsger Dijkstra
Hoare photo © David Monniaux. CC by-sa. Dijkstra photo © source unknown. All rights reserved.
This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Illustrative story of deadlock told by Charles 
Antony Richard Hoare based on an examination 
question by Edsgar Dijkstra.  The story has been 
embellished over the years by many retellers.

http://ocw.mit.edu/fairuse
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Dining Philosophers

while (1) {

think();

chopstick[i].L.lock();

chopstick[(i+1)%n].L.lock();

eat();

chopstick[i].L.unlock();

chopstick[(i+1)%n].L.unlock();

}

Each of n philosophers needs 
the two chopsticks on 
either side of his/her 
plate to eat his/her 
noodles.

Philosopher i

Dining philosophers image © source unknown.
All rights reserved. This content is excluded from
our Creative Commons license. For more
information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Dining Philosophers

while (1) {

think();

chopstick[i].L.lock();

chopstick[(i+1)%n].L.lock();

eat();

chopstick[i].L.unlock();

chopstick[(i+1)%n].L.unlock();

}

Each of n philosophers needs 
the two chopsticks on 
either side of his/her 
plate to eat his/her 
noodles.

Philosopher i

One day they all pick 
up their left chopsticks 

simultaneously.

Starving

Dining philosophers image © source unknown.
All rights reserved. This content is excluded from
our Creative Commons license. For more
information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Preventing Deadlock

Theorem. Suppose that we can linearly 
order the mutexes L1 ⋖ L2 ⋖ ⋯ ⋖ Ln so that 
whenever a thread holds a mutex Li and 
attempts to lock another mutex Lj , we 
have Li ⋖ Lj .  Then, no deadlock can occur.

Proof. Suppose that a cycle of waiting exists.  
Consider the thread in the cycle that holds the 
―largest‖ mutex Lmax in the ordering, and suppose 
that it is waiting on a mutex L held by the next 
thread in the cycle.  Then, we must have Lmax ⋖ L .  
Contradiction. ∎
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Dining Philosophers

Philosopher i
while (1) {

think();

chopstick[min(i,(i+1)%n)].L.lock();

chopstick[max(i,(i+1)%n)].L.lock();

eat();

chopstick[i].L.unlock();

chopstick[(i+1)%n].L.unlock();

}

Dining philosophers image © source unknown.
All rights reserved. This content is excluded from
our Creative Commons license. For more
information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse
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Deadlocking Cilk++

void main() {

cilk_spawn foo();

L.lock();

cilk_sync;

L.unlock();

}

void foo() {

L.lock();

L.unlock();

}

[ ]

[ ]

∙Don’t hold mutexes across cilk_sync’s!
∙Hold mutexes only within strands.
∙As always, try to avoid using mutexes
(but that’s not always possible).

1

2
foo() waits.

main()

waits.
3
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Performance Bug in MIT-Cilk

When random work-stealing, each thief 
grabs a mutex on its victim’s deque:  
∙ If the victim’s deque is empty, the thief releases 

the mutex and tries again at random.  
∙ If the victim’s deque contains work, the thief 

steals the topmost frame and then releases the 
mutex.

PROBLEM: At start-up, most thieves quickly 
converge on the worker P0 containing the 
initial strand, creating a convoy.
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Convoying
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Convoying
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Convoying
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Convoying
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Convoying

The work now gets distributed slowly as 
each thief serially obtains P0’s mutex.
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Solving the Convoying Problem

Use the nonblocking function try_lock(), 
rather than lock():
∙ try_lock() attempts to acquire the 

mutex and returns a flag indicating 
whether it was successful, but it does not 
block on an unsuccessful attempt.

In Cilk++, when a thief fails to acquire a 
mutex, it simply tries to steal again at 
random, rather than blocking.  
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Summing Example

int compute(const X& v); 

int main() 

{ 

const std::size_t n = 1000000;

extern X myArray[n];

// ... 

int result = 0; 

for (std::size_t i = 0; i < n; ++i) 

{ 

result += compute(myArray[i]); 

} 

std::cout << "The result is: " 

<< result

<< std::endl; 

return 0; 

}
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Summing Example in Cilk++

int compute(const X& v); 

int main() 

{ 

const std::size_t n = 1000000;

extern X myArray[n];

// ... 

int result = 0; 

cilk_for (std::size_t i = 0; i < n; ++i) 

{ 

result += compute(myArray[i]); 

} 

std::cout << "The result is: " 

<< result

<< std::endl; 

return 0; 
Race!

}

Work = Θ(n)
Span = Θ(lgn)
Running time =

O(n/P + lgn)
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Mutex Solution

int compute(const X& v); 

int main() 

{ 

const std::size_t n = 1000000;

extern X myArray[n];

// ... 

int result = 0; 

mutex L;

cilk_for (std::size_t i = 0; i < n; ++i) 

{   

L.lock();

result += compute(myArray[i]); 

L.unlock();

} 

std::cout << "The result is: " 

<< result

<< std::endl; 

return 0; 

}

Lock 
contention
⇒ no 
parallelism!

Work = Θ(n)
Span = Θ(lgn)
Running time =
Ω(n)
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Scheduling with Mutexes

Greedy scheduler: 
TP ≤ T1/P + T∞ + B , 

where B is the bondage — the total time of 
all critical sections. 

This upper bound is weak, especially if 
many small mutexes each protect different 
critical regions.  Little is known theoretically 
about lock contention.
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Rule of Thumb

Always write
deterministic programs. 
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Rule of Thumb

Always write
deterministic programs, 

unless you can’t!
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