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6.055J/2.038J (Spring 2008) 

Solution set 4 

Do the following warmups and problems. Due in class on Friday, 04 Apr 2008. 

Open universe: Collaboration, notes, and other sources of information are encouraged. However, avoid 
looking up answers until you solve the problem (or have tried hard). That policy helps you learn the most 
from the problems. 

Bring a photocopy to class on the due date, trade it for a solution set, and figure out or ask me about 
any confusing points. Your work will be graded lightly: P (made a reasonable effort), D (did not make a 
reasonable effort), or F (did not turn in). 

Warmups 
1. Minimum power 

In lecture we estimated the flight speed that minimizes energy consumption. Call that speed 
vE. We could also have estimated vP, the speed that minimizes power consumption. What is 
the ratio vP/vE? 

The zillions of constants (such as ρ) clutter the analysis without changing the result. So I’ll simplify 
the problem by using a system of units where all the constants are 1. Then the energy is 

1
E ∼ v2 

v2 ,+ 

where the first term is from drag and the second term is from lift. The power is energy per time, 
and time is inversely proportional to v, so P ∝ Ev and 

1 
+ .P ∼ v3 

v 

The first term is the steep v3 dependence of drag power on velocity (which we used to estimate the 
world-record cycling and swimming speeds). 

The energy expression is unchanged when v 1/v, so it has a minimum at vE = 1. To minimize →

the power, use calculus (ask me if you are curious about calculus-free ways to minimize it): 

dP 1 
dv 
∼ 3v2 

− 
v2 = 0, 

therefore vP = 3−1/4 (roughly 3/4), which is also the ratio vP/vE. 

So the minimum-power speed is about 25% less than the minimum-energy speed. That result 
makes sense. Drag power grows very fast as v increases – much faster than lift power decreases – 
so it’s worth reducing the speed a little to reduce the drag a lot. 

If you don’t believe the simplification that I used of setting all constants to 1 – and it is not imme
diately obvious that it should work – then try using this general form: 

B
E ∼ Av2 + 

v2 , 

where A and B are constants. You’ll find that vE and vP get the same function of A and B, which 
disappears from the ratio vP/vE. 
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2.	 Solitaire 
You start with the numbers 3, 4, and 5. At each move, you choose any two of the three numbers 
– call the choices a and b – and replace them with 0.8a − 0.6b and 0.6a + 0.8b. The goal is to 
reach 4, 4, 4. Can you do it? If yes, give a move sequence; if no, show that you cannot. 

To see whether solitaire games are solvable, look for an invariant. Alas there is no algorithm for 
finding invariants; you have to use clues and make lucky guesses. 

Speaking of clues, is it a happy coincidence that 0.82 + 0.62 = 1? That convenient sum suggests 
looking at sums of squares, and how those are changed by making a move. Replacing a and b by 
a′ = 0.8a − 0.6b and b′ = 0.6a + 0.8b makes the sum of squares a2 + b2 into a′2 + b′2. Expand that 
expression: 

a′2 + b′2 = (0.8a − 0.6b)2 + (0.6a + 0.8b)2


= 0.64a2 
− 0.96ab + 0.36b2 + 0.36a2 + 0.96ab + 0.64b2


= a2 + b2 .


Great! Each move leaves the sum of squares unchanged. That sum started out with the invariant 
at 32 + 42 + 52 = 50, so it remains 50. The goal state, however, requires that the invariant become 
42 + 42 + 42 = 48. It’s not possible to reach the goal. 

The invariant has a nice geometric interpretation (a picture). To see it, let P = (a, b, c) be the coordi
nates of a point in three-dimensional space. Then each move leaves unchanged the distance to the 
origin, which is 

√

a2 + b2 + c2. So each move shifts P to another location equally distant from the 
origin, meaning that it moves P on the surface of a sphere. But it cannot escape the surface. 

An interesting question to which I don’t know the answer: Can you reach every point on the 
surface of the sphere? The distance invariant does not forbid it, but maybe other constraints do? 

Problems 
3.	 Bird flight 

a.	 For geometrically similar animals (same shape and composition but different size), how 
does the minimum-energy speed v depend on mass M and air density ρ? In other words, 
what are the exponents α and β in v ∝ ραMβ? 

From the lecture notes, 

Mg ∼ C1/2ρv2L2 , 

where C is the modified drag coefficient. So ( )1/2Mg 
.v ∼ 

C1/2ρL2 

For geometrically similar animals, g is independent of size (they all fight the same gravity) 
and C is also independent of size (because the drag coefficient depends only on shape). But M 
depends on L according to M ∝ L3 or L ∝ M1/3. So the L2 in the denominator is proportional to 
M2/3 making 

v ∝ ρ−1/2M1/6 . 
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giving α = −1/2 and β = 1/6. 

The inverse relationship between the speed and density explains why planes fly at a high alti
tude. The energy consumption at the minimum-energy speed is independent of ρ, so by flying 
high where ρ is low, planes increase their speed without increasing their energy consumption. 

b.	 Use that result to write the ratio v747/vgodwit as a product of dimensionless factors, where 
v747 is the minimum-energy speed of a 747, and vgodwit is the minimum-energy speed of 
a bar-tailed godwit. Then estimate the dimensionless factors and their product. Useful 
information: mgodwit ∼ 0.4 kg. 

Assuming that the animals and planes fly at the minimum-energy speed, 

v747 
( 
ρhigh 

)−1/2 ( 
m747 

)1/6


vgodwit 
= 
ρsealevel 

· 
mgodwit 

.


A plane flies at around 10 km where the density is roughly one-third of the sea-level density. 
The mass of a 747 is roughly 4 105 kg, so the mass ratio is 106. Therefore the speed ratio should ·

be roughly 

(1/3)−1/2 
× (106)1/6 = 

√

3 × 10 ∼ 17. 

c.	 Use v747, from experience or from looking it up, to find vgodwit. Compare with the speed of 
the record-setting bar-tailed godwit, which made its 11, 570 km journey in 8 days, 12 hours. 

A 747 flies at around 600 mph so the godwit should fly around 600/17 mph ∼ 35 mph. The 
speed of record-setting godwit is 

11, 570 km 0.6 mi 1 day

8.5 days 

× 
1 km 

× 
24 hours 

∼ 35 mph.


That’s absurdly close. 

4.	 Hovering and hummingbirds 
A simple model of hovering is that the animal or helicopter (mass M and wingspan L) forces 
air downward to stay aloft. 

a.	 Estimate the downward air speed vdown needed to hover. 

The reasoning is the same as for a forward-flying animal: It must deflect air downwards in 
order to recoil upwards and stay aloft. The hummingbird sweeps air downwards roughly over 
an area L2, so in a time t, it has swept a volume L2vdownt and a mass 

mair ∼ ρL2vdownt. 

To get the right recoil, the momentum provided by gravity must be the momentum imparted 
to the air. Gravity provides a force Mg, so in time t it provides a momentum Mgt (since F = 
d(momentum)/dt). So mairvdown ∼ Mgt and 
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Mgt Mgt

vdown ∼ 

mair 
∼ 
ρL2vdownt 

.


Before solving for vdown, note the difference between this analysis and the analysis for forward-
flying animals. In that analysis (the one given in the notes), the similar formula has vforward in 
the denominator on the right side rather than vdown. 

Solving for vdown gives
( )1/2
Mg

vdown ∼ 

ρL2 .


b.	 Show that the power required to hover is 

(Mg)3/2 

.P ∼ 
ρ1/2L 

Power is force times velocity. The bird is generating a lift force Mg so that it can hover, and 
forcing air downward at speed vdown, so the power is
( )1/2
Mg (Mg)3/2


P ∼ Mgvdown ∼ Mg 
ρL2 = 

ρ1/2L 
.


c.	 Estimate P and vdown for a person hovering by flapping or waving his or her arms. 

I estimate vdown using a wingspan of L ∼ 2 m and a mass of M ∼ 70 kg: ( 
70 kg × 10 m s−2 )1/2 

vdown ∼ 
1 kg m−3 × 4 m2 

∼ 14 m s−1 . 

This value is probably an underestimate because it assumes that the person’s arm motions fill 
the whole area L2, whereas it might fill only one-fifth or even one-tenth of the whole area. 

But leaving the estimate as is, the resulting power is 

P ∼ Mgvdown ∼ 70 kg × 10 m s−2 
× 14 m s−1 

∼ 104 W. 

That power is significantly greater than the 500 W endurance-power that we estimated for an 
athlete. People have no chance of hovering, at least not without using very large (and very 
light!) wings. 

d.	 How does P depend on M for geometrically similar animals (same composition and shape 
but varying size)? In other words, give the exponent β in 

P ∝ Mβ. 
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Again L ∝ M1/3, so 

(Mg)3/2


P ∼ 
ρ1/2L


becomes 

M3/2


P ∝ 
M1/3 

= M5/6 .


So the power increases slightly more slowly than the mass does. 

e.	 What fraction of its body weight does a hummingbird (M ∼ 3 g) eat every day in order to 
hover for a working day (8 hours)? Compare to the fraction for a person in a typical day. 
[Hummingbirds eat nectar, which is roughly equal parts sugar and water.] 

For simplicity I assume that humans and hummingbirds are geometrically similar, so L ∝ M1/3; 
then I use that proportionality to work out how the body-weight fraction scales with M. 

The body-weight fraction is proportional to the hovering power per body mass P/M, which 
is proportional to M−1/6. So small animals need to eat a larger fraction of their body mass to 
hover than do large animals. The mass ratio between a hummingbird and a person is roughly 
2.5 104, or 106/40, so ratio of body-weight fractions is (106/40)−1/6 or 401/6/10. Since 401/6 is· 
roughly 2, the ratio is roughly 0.2. 

Now I compute the body-weight fraction for a hovering person starting from the power re
quired to hover. In part (c) I computed that a hovering person requires roughly 104 W. Pretend 
that humans also eat nectar. Sugar provides 4 kcal/ g of energy, but the conversion is about 
25% efficient, so about 1 kcal/ g of mechanical power. That’s 4 MJ kg−1. Nectar is one-half as 
useful, so it provides 2 MJ kg−1. 

One day of hovering (8 hours) means eating (or drinking) this much nectar: 

104 W × 8 hours × 
3600 s 1 kg nectar 

∼ 150 kg.
1 hour 

× 
2 106 J· 

So a hovering person would eat roughly double their body weight in nectar, and a humming
bird (using the estimated ratio of 0.2) would eat 2 × 0.2 ∼ 50% of their body weight in nectar! 

Hummingbirds are hungry animals! And big hummingbirds would have a hard time hovering 
because the energy requirements are so large. 

In a typical human day – definitely not spent hovering – we eat 2500 kcal or roughly 500 g of 
carbohydrate. Most foods (e.g. plants, meat) are about 80 or 90% water, so we probably eat 5 
or 10 times 500 g in mass. I’ll use a factor of 7 because the numbers turn out simple. A factor 
of 7 makes the total mass consumed in a day roughly 3.5 kg; that mass is 0.05 times a typical 
human mass. 
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Optional 
5. Inertia tensor 

[For those who know about inertia tensors.] Here is the inertia tensor (the generalization of mo
ment of inertia) of a particular object, calculated in a lousy coordinate system: 

4 0 0

0 5 4

0 4 5


a. Change coordinate systems to a set of principal axes. In other words, write the inertia 
tensor as 

Ixx 0 0 
0 Iyy 0 
0 0 Izz 

and give Ixx, Iyy, and Izz. Hint: What properties of a matrix are invariant when changing 
coordinate systems? 




 






 



Whatever coordinate change I make, I will leave the x axis alone because the Ixx component is 
already separated from the y- and z submatrix. That submatrix is ( 5 4 

4 5 

) 
I have to figure out how changing the coordinate system changes this submatrix. Rather than 
find the coordinate change explicitly, I use invariants to avoid that computation. 

One invariant of any matrix, not just of this 2×2 matrix, is its determinant. Another invariant is 
its trace (the sum of the diagonal elements). In the nasty coordinate system, the trace of the y-
and z submatrix is 5 + 5 = 10. So the trace is 10 in the nice coordinate system. The determinant 
is 5 × 5 − 4 × 4 = 9, so it the determinant is 9 in the nice coordinate system. 

Those facts are sufficient to deduce the submatrix in the nice coordinate system (without need
ing to figure out what the nice coordinate system is). In the nice coordinate system, the 2 × 2 
submatrix looks like ( Iyy 0 

0 Izz 

) 
So I need to find Iyy and Izz such that 

Iyy + Izz = 10 (from the trace invariant) 

and 

IyyIzz = 9 (from the determinant invariant) 

The solution is Iyy = 1 and Izz = 9 (or vice versa). So the inertia tensor becomes   

4 0 0 
0 1 0 
0 0 9 
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b.	 Give an example of an object with a similar inertia tensor. On Friday in class we’ll have a 
demonstration. 

The object has three principal axes, each with a different moment of inertia. If the object is 
rectangular and uniform density, the three axes must have different lengths. Most books fit 
into this category. They have a short axis that passes perpendicularly through the pages (this 
axis is the one with the highest moment of inertia). The medium-length axis is perpendicular 
to the spine. And the long axis is parallel to the spine. 

6. Resistive grid 

Ω

In an infinite grid of 1-ohm resistors, what is the resistance measured 
across one resistor? 

To measure resistance, an ohmmeter injects a current I at one terminal 
(for simplicity, say I = 1 A), removes the same current from the other 
terminal, and measures the resulting voltage difference V between 
the terminals. The resistance is R = V/I. 

Hint: Use symmetry. But it’s still a hard problem! 

I’d like to find the current flowing through the resistor when 1 A is sent 
into one terminal of the ohmmeter and removed from its other terminal. 
The solution has two steps, each subtle: 

1. Break the resistance-measuring experiment into two parts, each having a lot of symmetry. 

2. Analyze those parts using symmetry. 

The current distribution that results from the full resistance-measuring experiment is not suffi
ciently symmetric because it has a preferred direction along the selected resistor. However, if I 
break the experiment into two parts – inserting current and removing current – then each part 
produces a symmetric current distribution. 

By symmetry – because all four coordinate directions are equivalent – 
inserting 1 A produces 1/4 A flowing in each coordinate direction away 
from the terminal. Let’s call this terminal the positive terminal. So in
serting the 1 A at the positive terminal produces 1/4 A through the se
lected resistor, and this current flows away from the positive terminal. 
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By symmetry, removing 1 A produces 1/4 A in each coordinate direc
tion, flowing toward the terminal. Let’s call this terminal the negative 
terminal. So removing 1 A produces 1/4 A through the selected resistor, 
flowing toward the negative terminal. Equivalently, it produces 1/4 A 
flowing away from the positive terminal. 

Now superimpose the two pictures to reproduce the experiment of mea
suring the resistance. The experiment produces 1/2 A through the re
sistor, flowing from the positive to the negative terminal. The voltage 
across the resistor is the current times its resistance, so the voltage is 
1/2 V. Since a 1 A test current produces a 1/2 V drop, the effective resis
tance is 1/2Ω. 

If you want an even more difficult problem: Find the resistance mea
sured across a diagonal! 


