Problem Set 4

Due: March 6

Reading:

- Section 5.4. State Machines: Invariants in the course textbook.
- Chapter 6. Recursive Data Types in the course textbook.
- Chapter 7. Infinite Sets, The Halting Problem in the course textbook.

Problem 1.

A robot moves on the two-dimensional integer grid. It starts out at $(0,0)$ and is allowed to move in any of these four ways:

1. $(+2,-1)$: right 2 , down 1
2. $(-2,+1)$: left 2 , up 1
3. $(+1,+3)$
4. $(-1,-3)$

Prove that this robot can never reach $(1,1)$.

Problem 2.

Let L be some convenient set whose elements will be called labels. The labeled binary trees, LBT's, are defined recursively as follows:

Definition. Base case: if l is a label, then $\langle l$, lea $f\rangle$ is an LBT, and
Constructor case: if B and C are LBT's, then $\langle l, B, C\rangle$ is an LBT.
The leaf-labels and internal-labels of an LBT are defined recursively in the obvious way:
Definition. Base case: The set of leaf-labels of the LBT $\langle l$, leaf \rangle is $\{l\}$, and its set of internal-labels is the empty set.
Constructor case: The set of leaf labels of the LBT $\langle l, B, C\rangle$ is the union of the leaf-labels of B and of C; the set of internal-labels is the union of $\{l\}$ and the sets of internal-labels of B and of C.

The set of labels of an LBT is the union of its leaf- and internal-labels.
The LBT's with unique labels are also defined recursively:
@(9)(2015, Eric Lehman, F Tom Leighton, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 license.

Definition. Base case: The LBT $\langle l$, lea $f\rangle$ has unique labels.
Constructor case: If B and C are LBT's with unique labels, no label of B is a label C and vice-versa, and l is not a label of B or C, then $\langle l, B, C\rangle$ has unique labels.

If B is an LBT, let n_{B} be the number of distinct internal-labels appearing in B and f_{B} be the number of distinct leaf labels of B. Prove by structural induction that

$$
\begin{equation*}
f_{B}=n_{B}+1 \tag{1}
\end{equation*}
$$

for all LBT's B with unique labels. This equation can obviously fail if labels are not unique, so your proof had better use uniqueness of labels at some point; be sure to indicate where.

Problem 3.

In this problem you will prove a fact that may surprise you-or make you even more convinced that set theory is nonsense: the half-open unit interval is actually the "same size" as the nonnegative quadrant of the

(a) Describe a bijection from $(0,1]$ to $[0, \infty)$.

Hint: $1 / x$ almost works.
(b) An infinite sequence of the decimal digits $\{0,1, \ldots, 9\}$ will be called long if it does not end with all 0 's. An equivalent way to say this is that a long sequence is one that has infinitely many occurrences of nonzero digits. Let L be the set of all such long sequences. Describe a bijection from L to the half-open real interval $(0,1]$.

Hint: Put a decimal point at the beginning of the sequence.
(c) Describe a surjective function from L to L^{2} that involves alternating digits from two long sequences. Hint: The surjection need not be total.
(d) Prove the following lemma and use it to conclude that there is a bijection from L^{2} to $(0,1]^{2}$.

Lemma 3.1. Let A and B be nonempty sets. If there is a bijection from A to B, then there is also a bijection from $A \times A$ to $B \times B$.
(e) Conclude from the previous parts that there is a surjection from $(0,1]$ to $(0,1]^{2}$. Then appeal to the Schröder-Bernstein Theorem to show that there is actually a bijection from $(0,1]$ to $(0,1]^{2}$.
(f) Complete the proof that there is a bijection from $(0,1]$ to $[0, \infty)^{2}$.

[^0]MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

 Spring 2015For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The half-open unit interval, $(0,1]$, is $\{r \in \mathbb{R} \mid 0<r \leq 1\}$. Similarly, $[0, \infty)::=\{r \in \mathbb{R} \mid r \geq 0\}$.

