Problems for Recitation 22

1 Properties of Variance

In this problem we will study some properties of the variance and the standard deviation of random variables.
a. Show that for any random variable $R, \operatorname{Var}[R]=\mathrm{E}\left[R^{2}\right]-\mathrm{E}^{2}[R]$.
b. Show that for any random variable R and constants a and b, $\operatorname{Var}[a R+b]=a^{2} \operatorname{Var}[R]$. Conclude that the standard deviation of $a R+b$ is a times the standard deviation of R.
c. Show that if R_{1} and R_{2} are independent random variables, then

$$
\operatorname{Var}\left[R_{1}+R_{2}\right]=\operatorname{Var}\left[R_{1}\right]+\operatorname{Var}\left[R_{2}\right]
$$

d. Give an example of random variables R_{1} and R_{2} for which

$$
\operatorname{Var}\left[R_{1}+R_{2}\right] \neq \operatorname{Var}\left[R_{1}\right]+\operatorname{Var}\left[R_{2}\right]
$$

e. Compute the variance and standard deviation of the Binomial distribution $H_{n, p}$ with parameters n and p.
f. Let's say we have a random variable T such that $T=\sum_{j=1}^{n} T_{j}$, where all of the T_{j} 's are mutually independent and take values in the range $[0,1]$. Prove that $\operatorname{Var}(\mathrm{T}) \leq \operatorname{Ex}(\mathrm{T})$. We'll use this result in lecture tomorrow. Hint: Upper bound Var $\left[T_{j}\right]$ with $\mathrm{E}\left[T_{j}\right]$ using the definition of variance in part (a) and the rule for computing the expectation of a function of a random variable.

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

