Problems for Recitation 22

1 Properties of Variance

In this problem we will study some properties of the variance and the standard deviation of random variables.

- a. Show that for any random variable R, $\operatorname{Var}[R] = \operatorname{E}[R^2] \operatorname{E}^2[R]$.
- b. Show that for any random variable R and constants a and b, $\operatorname{Var}[aR + b] = a^2 \operatorname{Var}[R]$. Conclude that the standard deviation of aR + b is a times the standard deviation of R.
- c. Show that if R_1 and R_2 are independent random variables, then

$$\operatorname{Var}[R_1 + R_2] = \operatorname{Var}[R_1] + \operatorname{Var}[R_2].$$

d. Give an example of random variables R_1 and R_2 for which

$$\operatorname{Var}[R_1 + R_2] \neq \operatorname{Var}[R_1] + \operatorname{Var}[R_2].$$

- e. Compute the variance and standard deviation of the Binomial distribution $H_{n,p}$ with parameters n and p.
- f. Let's say we have a random variable T such that $T = \sum_{j=1}^{n} T_j$, where all of the T_j 's are mutually independent and take values in the range [0, 1]. Prove that $\operatorname{Var}(T) \leq \operatorname{Ex}(T)$. We'll use this result in lecture tomorrow. *Hint: Upper bound* $\operatorname{Var}[T_j]$ with $\operatorname{E}[T_j]$ using the definition of variance in part (a) and the rule for computing the expectation of a function of a random variable.

6.042J / 18.062J Mathematics for Computer Science Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.