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1 Conditional Expectation and Total Expectation 

There are conditional expectations, just as there are conditional probabilities. If R is a 
random variable and E is an event, then the conditional expectation Ex (R | E) is defined 
by: � 

Ex (R | E) = R(w) · Pr {w | E}
w∈S 

For example, let R be the number that comes up on a roll of a fair die, and let E be the 
event that the number is even. Let’s compute Ex (R | E), the expected value of a die roll, 
given that the result is even. 

Ex (R | E) = R(w) · Pr {w | E} 
w∈{1,...,6} 

1 1 1 
= 1 0 + 2 + 3 0 + 4 + 5 0 + 6 · · 

3 
· · 

3 
· · 

3 
= 4 

It helps to note that the conditional expectation, Ex (R | E) is simply the expectation of 
R with respect to the probability measure PrE () defined in PSet 10. So it’s linear: 

Ex (R1 + R2 | E) = Ex (R1 | E) + Ex (R2 | E) . 

Conditional expectation is really useful for breaking down the calculation of an expecta
tion into cases. The breakdown is justified by an analogue to the Total Probability Theorem: 

Theorem 1 (Total Expectation). Let E1, . . . , En be events that partition the sample space 
and all have nonzero probabilities. If R is a random variable, then: 

Ex (R) = Ex (R | E1) · Pr {E1} + · · · + Ex (R | En) · Pr {En} 

For example, let R be the number that comes up on a fair die and E be the event that 
result is even, as before. Then E is the event that the result is odd. So the Total Expectation 
theorem says: � � 

Ex (R) = Ex (R E) Pr {E} +Ex R E Pr {E}� �� � � ��| � · � �� � � ��| � · � �� � 
= 7/2 = 4 = 1/2 = ? = 1/2 
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The only quantity here that we don’t already know is Ex R | E , which is the expected die 
roll, given that the result is odd. Solving this equation for this unknown, we conclude that 
Ex R | E = 3. 

To prove the Total Expectation Theorem, we begin with a Lemma. 

Lemma. Let R be a random variable, E be an event with positive probability, and IE be the 
indicator variable for E. Then 

Ex (R E) = 
Ex (R · IE ) 

(1)| 
Pr {E} 

Proof. Note that for any outcome, s, in the sample space, 

0 if IE (s) = 0,
Pr {{s} ∩ E} = 

Pr {s} if IE (s) = 1, 

and so 
Pr {{s} ∩ E} = IE (s) · Pr {s} . (2) 

Now, 

Ex (R | E) = R(s) · Pr {{s} | E} (Def of Ex (· | E)) 
s∈S 

= 
� 

R(s) 
Pr {{s} ∩ E} 

(Def of Pr {·· 
Pr {E}

| E}) 
s∈S 

= R(s) 
IE (s) · Pr {s} 

(by (2))· 
Pr {E}

s∈S 

= s∈S (R(s) · IE (s)) · Pr {s}
Pr {E} 

= 
Ex (R · IE ) 

(Def of Ex (R IE ))
Pr {E}

· 

Now we prove the Total Expectation Theorem: 

Proof. Since the Ei’s partition the sample space, 

R = R IEi (3)· 
i 
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for any random variable, R. So � � � 
Ex (R) = Ex R · IEi (by (3)) � i 

= Ex (R · IEi ) (linearity of Ex ()) 
i� 

= 
i 

Ex (R | Ei) · Pr {Ei} (by (1)) 
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Problem 1. [ points] Here’s yet another fun 6.042 game! You pick a number between 1 
and 6. Then you roll three fair, independent dice. 

� If your number never comes up, then you lose a dollar. 

� If your number comes up once, then you win a dollar. 

� If your number comes up twice, then you win two dollars. 

� If your number comes up three times, you win four dollars! 

What is your expected payoff? Is playing this game likely to be profitable for you or not? 

Solution. Let the random variable R be the amount of money won or lost by the player 
in a round. We can compute the expected value of R as follows: 

Ex (R) = −1 Pr {0 matches} + 1 Pr {1 match} + 2 Pr {2 matches} + 4 Pr {3 matches}· · · · � �3 � �� �2 � �2 � � � �3
5 1 5 1 5 1 

= −1 + 1 3 + 2 3 + 4 · 
6 

· 
6 6 

· 
6 6 

· 
6


−125 + 75 + 30 + 4

= 

216 
−16 

= 
216 

You can expect to lose 16/216 of a dollar (about 7.4 cents) in every round. This is a horrible 
game! � 
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Problem 2. [ points] The number of squares that a piece advances in one turn of the 
game Monopoly is determined as follows: 

� Roll two dice, take the sum of the numbers that come up, and advance that number 
of squares. 

� If you roll doubles (that is, the same number comes up on both dice), then you roll a 
second time, take the sum, and advance that number of additional squares. 

� If you roll doubles a second time, then you roll a third time, take the sum, and advance 
that number of additional squares. 

� However, as a special case, if you roll doubles a third time, then you go to jail. Regard 
this as advancing zero squares overall for the turn. 

(a) [ pts] What is the expected sum of two dice, given that the same number comes up on 
both? 

Solution. There are six equally-probable sums: 2, 4, 6, 8, 10, and 12. Therefore, the 
expected sum is: 

1 1 1 
2 + 4 + . . . + 12 = 7 

6 
· 

6 
· 

6 
· 

(b) [ pts] What is the expected sum of two dice, given that different numbers come up? 
(Use your previous answer and the Total Expectation Theorem.) 

Solution. Let the random variables D1 and D2 be the numbers that come up on the two 
dice. Let E be the event that they are equal. The Total Expectation Theorem says: 

Ex (D1 + D2) = Ex (D1 + D2 | E) · Pr {E} + Ex D2 + D2 | E · Pr E 

Two dice are equal with probability Pr {E} = 1/6, the expected sum of two independent 
dice is 7, and we just showed that Ex (D1 + D2 | E) = 7. Substituting in these quantities 
and solving the equation, we find: 

1 � � 5 
7 = 7 + Ex E· 

6 
D2 + D2 | · 

6 
Ex D2 + D2 | E = 7 

(c) [ pts] To simplify the analysis, suppose that we always roll the dice three times, but 
may ignore the second or third rolls if we didn’t previously get doubles. Let the random 
variable Xi be the sum of the dice on the i-th roll, and let Ei be the event that the i-th roll 
is doubles. Write the expected number of squares a piece advances in these terms. 
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Solution. From the total expectation formula, we get: 

Ex (advance) = Ex X1 E1 Pr E1 � | · � � � 
+ Ex X1 + X2 | E1 ∩ E2 · Pr E1 ∩ E2 

+ Ex X1 + X2 + X3 | E1 ∩ E2 ∩ E3 · Pr E1 ∩ E2 ∩ E3 

+ Ex (0 | E1 ∩ E2 ∩ E3) · Pr {E1 ∩ E2 ∩ E3} 

Then using linearity of (conditional) expectation, we refine this to 

Ex (advance) 

= Ex X1 E1 Pr E1 � � | · � � �� � � 
+ � Ex � X1 | E1 ∩ E2 + Ex � X2 |� E1 ∩ E2 · Pr E1 �∩ E2 � �� 
+ Ex X1 + Ex X2 + Ex X3 � 

| E1 ∩ E2 �∩ E3 | E1 ∩ E2 ∩ E3 | E1 ∩ E2 ∩ E3 

Pr E1 ∩ E2 ∩ E3· 
+ 0. 

Using mutual independence of the rolls, we simplify this to 

Ex (advance) 

= Ex X1 E1 Pr E1 (4)� | · � �� � � 
+ �Ex (X1 | E1) + Ex X2 | E2 · Pr {� E1} · Pr �� E2 � � 
+ Ex (X1 | E1) + Ex (X2 | E2) + Ex X3 | E3 · Pr {E1} · Pr {E2} · Pr E3 

(d) [ pts] What is the expected number of squares that a piece advances in Monopoly? 

Solution. We plug the values from parts (a) and (b) into equation (4): 

5 1 5 1 1 5 
Ex (advance) = 7 + (7 + 7) + (7 + 7 + 7) · 

6 
· 
6 
· 
6 

· 
6 
· 
6 
· 
6 

19 
= 8 

72 
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