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Tom Leighton and Marten van Dijk 

Notes for Recitation 16 

1 Combinatorial Proof 

A combinatorial proof is an argument that establishes an algebraic fact by relying on 
counting principles. Many such proofs follow the same basic outline: 

1. Define a set S. 

2. Show that |S| = n by counting one way. 

3. Show that |S| = m by counting another way. 

4. Conclude that n = m. 

Consider the following theorem: 

Theorem. 
n � � � �� k + i k + n + 1 

= 
k k + 1 

i=0 

We can prove it with a combinatorial approach: 

Proof. We give a combinatorial proof. Let S be the set of all binary sequences with exactly 
n zeroes and k + 1 ones. 

On the one hand, we know from a previous recitation that the number of such sequences 
is equal to k+

k
n+1 . 

On the other hand, the number of zeroes i to the left of the rightmost one ranges from 0 
to n. For a fixed value of i, there are k+i possible choices for the sequence of bits before 

k � � � n k+ithe rightmost one. If we sum over all possible i, we find that |S| = i=0 k . 

Equating these two expressions for |S| proves the theorem.
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2 Triangles 

Let T = {X1, . . . , Xt} be a set whose elements Xi are themselves sets such that each Xi has 
size 3 and is ⊆ {1, 2, . . . , n}. We call the elements of T “triangles”. Suppose that for all 
“edges” E ⊆ {1, 2, . . . , n} with |E| = 2 there are exactly λ triangles X ∈ T with E ⊆ X. 

For example, if we might have the triangles depicted in the following diagram, which has 
λ = 2, n = 4, and t = 4: 

1 2

3

4

In this example, each edge appears in exactly two of the following triangles: 

{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} 

Prove 
n(n − 1)

λ = 3t· 
2 

by counting the set 
C = {(E,X) : X ∈ T,E ⊆ X, |E| = 2} 

in two different ways. 

Solution. We give a combinatorial proof. Let C be {(E,X) : X ∈ T,E ⊆ X, E = 2}. 
On the one hand, there are n sets E ⊆ {1, . . . , n} of size E = 2. For each such E there

2 � 
n �| | 

n(n−1)are exactly λ triangles X ∈ T with E ⊆ X. So, |C| = λ = λ · � . �2 2 

On the other hand, there are t triangles. Each triangle has exactly 
2
3 = 3 subsets E of 

size 2. So, |C| = 3t. 

Equating these two expressions for |C| proves the theorem. � 

3 Counting, counting, counting 

Learning to count takes practice! Briefly justify your answers to the following questions. 
Not every problem can be solved with a cute formula; you may have to fall back on case 
analysis, explicit enumeration, or ad hoc methods. Do as many problems as you can and 
save the rest to study for Quiz II. You may leave factorials and binomial coefficients in your 
answers. 
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1. How many different arrangements are there of the letters in BANANA? 

Solution. By the Bookkeeper Rule, there are: 

6! 
= 60 

1! 3! 2! 

2. How many different paths are there from point (0, 0, 0) to point (10, 20, 30) if every 
step increments one coordinate and leaves the other two unchanged? 

Solution. There is a bijection between the set of all such paths and the set of strings 
containing 10 X’s, 20 Y’s, and 30 Z’s. In particular, we obtain a path by working 
through a string from left to right. An X corresponds to a step that increments the 
first coordinate, a Y increments the second coordinate, and a Z increments the third. 
The number of such strings is: 

60! 
10! 20! 30! 

Therefore, this is also the number of paths. � 

3. Find the number of 5-card hands with exactly three aces. 

Solution. We can choose the three aces in 4 ways, and we can choose the remaining � � � ��3 �
48 4 48two cards in 
2 ways. Thus, there are 

3 2 such hands. � 

4. Find the number of 5-card hands in which every suit appears at most twice. 

Solution. There are two cases. Either one suit appears twice or else two suits appear 
13twice. The number of hands in which one suit appears twice is 
2 133 4, since · · 

13there are 4 ways to choose the doubly represented suit, 
2 ways to choose two values 

from this suit, and 133 ways to choose values for cards in the three remaining suits. �
13
�2 �

4
� 

Similarly, the number of hands in which two suits appear twice is 
2 13 

2 2.· · · 
Therefore, there are a total of � � � �2 � � 

13 13 4 
133 4 + 13 2 

2 
· · 

2 
· · 

2 
· 

such hands. � 

5. There are 15 sidewalk squares in a row. Suppose that a ball is thrown down the row so 
that it bounces on 0, 1, 2, or 3 distinct sidewalk squares. How many different throws 
are possible? Two throws are considered to be equivalent if they bounce on the same 
squares in a different order. 
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Solution. � � � � � � � � 
15 15 15 15 

+ + + 
0 1 2 3 

6. In how many different ways can the numbers shown on a red die, a green die, and a 
blue die total up to 15? Assume that these are ordinary, 6-sided dice. 

Solution. We fall back on explicit enumeration. Let R, G, and B be the values 
shown on the three dice. 

R = 1, B + G = 14 0 ways →
R = 2, B + G = 13 0 ways →
R = 3, B + G = 12 1 ways →
R = 4, B + G = 11 2 ways →
R = 5, B + G = 10 3 ways →
R = 6, B + G = 9 4 ways → 

A total of 10 ways. 

Another approach (suggested by a student in recitation) begins by observing that the 
number of ways the dice can sum to 15 is the same as the number of positive integer 
solutions to the equation 

x1 + x2 + x3 = 15 

such that xi ≤ 6. In general, counting solutions with inequality constraints on the 
variables involves a tedious case analysis, but in this case there’s a trick to remove 
the constraints: let yi = 6 − xi. Now the number of desired xi solutions is the same 
as the number of nonnegative integer solutions to 

y1 + y2 + y3 = 3 (1) 

such that yi ≤ 5. But since the sum of the yi’s must be three, the constraint that 
yi ≤ 5 will be met by every nonnegative integer solution to (1). So we need only 
count the number of nonnegative integer solutions to (1), which we already know is 
the same as the number of binary sequences of two zeros and three ones, namely 

2 + 3 
= 10. 

3 

7. In how many ways can 20 indistinguishable pre-frosh be stored in four different crates 
if each crate must contain an even number of pre-frosh? 

Solution. There is a bijection from 13-bit strings with exactly 3 ones. In particular, 
the string 0a10b10c10d corresponds to to storing 2a prefrosh in the first crate, 2b in 
the second, 2c in the third, and 2d in the fourth. Therefore, the number of ways to 
store the pre-frosh is equal to the number of 13-bit strings with exactly 3 ones, which 
is 13 . �

3 



� � � � � � 

� � � � 

� � � � � � � � � � � � � � � � � � � � � � 

� 

� 

� 
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8. How many paths are there from point (0, 0) to (50, 50) if every step increments one 
coordinate and leaves the other unchanged and there are impassable boulders sitting 
at points (10, 10) and (20, 20)? 

100Solution. We use inclusion-exclusion. The total number of paths is 
50 , but we 

20 80must subtract off the obstructed paths. There are 
10 40 paths through the first � � · � �

20 80boulder, since there are 
10 paths from the start to the boulder and 

40 paths from 
40 60the boulder to the finish. Similarly, there are 
20 30 paths through the second · 

boulder. However, we must add back in paths going through both boulders, and 
20 20 60there are 
10 10 30 of those. Therefore, the total number of paths is: · · 

100 20 80 40 60 20 20 60 
50 

− 
10 

· 
40 

− 
20 

· 
30 

+ 
10 

· 
10 

· 
30 

9. In how many ways can the 180 students in 6.042 be divided into 36 groups of 5? 

Solution. We can group the students using the following procedure: line up the 
students in some order. Group the first five students, the sixth through tenth students, 
the eleventh through fifteenth students, and so on. The students can be lined up in 
180! ways. However, this overcounts by a factor of (5!)36, since the students within 
each of the 36 groups can be ordered in 5! ways. We are also overcounting by an 
additional factor of 36!, since the 36 groups can be ordered in 36! ways. Thus, the 
number of groupings is 

180! 
(5!)36 36!· 

10. In how many different ways can 10 indistinguishable balls be placed in four distinguish­
able boxes, such that every box gets 1, 2, 3, or 4 balls? 

Solution. First, we might as well put 1 ball in every box. Now the problem is to 
put the remaining 6 balls into 4 boxes so that no box gets more than 3 balls. Now 
we turn to case analysis. For example, we could put 3 balls in two boxes and 0 balls 
in the other two boxes. There are 4!/(2! 2!) = 6 ways to do this. All cases are listed 
below: 

distribution of balls # of ways 
4! 

3, 3, 0, 0 = 6 
2! 2! 
4! 

3, 2, 1, 0 = 24 
1! 1! 1! 1! 

4! 
3, 1, 1, 1 = 4 

3! 1! 
4! 

2, 2, 2, 0 = 4 
3! 1! 
4! 

2, 2, 1, 1 = 6 
2! 2! 
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11. In how many different ways can Blockbuster arrange 64 copies of Cat in the Hat, 96 
copies of Matrix Revolutions, and 1 copy of Amelie on 5 shelves? 

Solution. This is the number of ways to arrange 64 C’s (Cat in the Hat), 96 M ’s 
(Matrix), 1 A’s (Amelie), and 4 X’s (dividers between shelves). This is equal to: 

(64 + 96 + 1 + 4)! 
64! 96! 1! 4! 

4 There’s more than one way... 

In the beginning of today’s recitation, we gave a combinatorial proof of the following theorem: 

Theorem. � � � �n� k + i k + n + 1 
= 

k k + 1 
i=0 

We can also prove this theorem using induction. Give such a proof. 

Solution. Proof. The proof is by induction on n. Let P (n) be the proposition that ∀k > 0,� � � � � n k+i k+n+1 = , n ≥ 0.i=0 k k+1 

Base case: P (0) is true because 

0� k + i k k + 1 ∀k > 0, = = = 1 
k k k + 1 

i=0 

Inductive step: Assume P (n) is true. Show P (n + 1) must be true ∀n > 0. 
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n+1 n� k + i k + n + 1 � k + i ∀k > 0, = + (2)
k k k 

i=0 i=0 

k + n + 1 k + n + 1 
= + (3)

k k + 1 
(k + n + 1)! (k + n + 1)! 

= + (4)
k!(n + 1)! (k + 1)!n! 
(k + 1)(k + n + 1)! + (k + n + 1)!(n + 1) 

= (5)
(k + 1)!(n + 1)! 

(k + n + 1)!(k + n + 2) 
= (6)

(k + 1)!(n + 1)! 
(k + n + 2)! 

= (7)
(k + 1)!(n + 1)! 
k + n + 2 

= (8)
k + 1 

The inductive hypothesis is applied in Step 3. Step 4 follows by definition of choose, and 
the remaining steps are algebraic simplifications. 

It is always good to have more than one way to solve a problem! � 
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