
6.042/18.062J Mathematics for Computer Science October 24, 2006
Tom Leighton and Marten van Dijk

Problems for Recitation 14

1 TriMergeSort

We noted in lecture that reducing the size of subproblems is much more important to the
speed of an algorithm than reducing the number of additional steps per call. Let’s see if we
can improve the Θ(n log n) bound on MergeSort from lecture.

Let’s consider a new version of MergeSort called TriMergeSort, where the size n list is
now broken into three sublists of size n/3, which are sorted recursively and then merged.
Since we know that floors and ceilings do not affect the asymptotic solution to a recurrence,
let’s assume that n is a power of 3.

1. How many comparisons are needed to merge three lists of 1 item each?

2. In the worst case, how many comparisons are needed to merge three lists of n/3 items,
where n is a power of 3?

3. Define a divide-and-conquer recurrence for this algorithm. Let T (n) be the number of
comparisons to sort a list of n items.

4. We could analyze the running time of this using plug-and-chug, but let’s try Akra-
Bazzi. First, what is p?

2 Recitation 14

5. Does the condition |g�(x)| = O(xc) hold for some c ∈ N?

6. Determine the theta bound on T(n) by integration.

7. Turns out that any equal partition of the list into a constant number of sublists c > 1
will yield the same theta bound. Can you see why?

�
 �
 �
 ��

3 Recitation 14

Appendix

Theorem 1 (Akra-Bazzi, strong form). Suppose that: ⎧ ⎪⎨

is defined for 0 ≤ x ≤ x0

T (x) =
⎪⎩

k

aiT (bix + hi(x)) + g(x) for x > x0

�

i=1

where:

� a1, . . . , ak are positive constants

� b1, . . . , bk are constants between 0 and 1

� x0 is “large enough” in a technical sense we leave unspecified

� |g�(x)| = O(xc) for some c ∈ N

� |hi(x)| = O(x/ log2 x)

Then:

x g(u)

T (x) = Θ xp 1 + du

up+1

1

where p satisfies the equation
�

i
k
=1 aib

p
i = 1.

4 Recitation 14

Linear Recurrences

Find closed-form solutions to the following linear recurrences.

1.	 T0 = 0

T1 = 1

Tn = Tn−1 + Tn−2 + 1

2.	 S0 = 0

S1 = 1

Sn = 6Sn−1 − 9Sn−2

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	TriMergeSort

