Notes for Recitation 13

1 Asymptotic Notation

Which of these symbols

$$
\Theta \quad O \quad \Omega \quad \begin{array}{llll}
\Theta & \Omega & \omega
\end{array}
$$

can go in these boxes? (List all that apply.)

$$
\begin{align*}
& 2 n+\log n \quad=\quad \square(n) \\
& \Theta, O, \Omega \\
& \log n \quad=\quad \square \\
& \text { (n) } \\
& O, o \\
& \sqrt{n} \quad= \\
& \square \\
& \left(\log ^{300} n\right) \\
& \Omega, \omega \\
& n 2^{n}=\square(n) \\
& \Omega, \omega \\
& n^{7}= \tag{n}\\
& O, o
\end{align*}
$$

2 Asymptotic Equivalence

Suppose $f, g: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$and $f \sim g$.

1. Prove that $2 f \sim 2 g$.

Solution.

$$
\frac{2 f}{2 g}=\frac{f}{g}
$$

so they have the same limit as $n \rightarrow$ infty.
2. Prove that $f^{2} \sim g^{2}$.

Solution.

$$
\lim _{n \rightarrow \infty} \frac{f(n)^{2}}{g(n)^{2}}=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \cdot \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)} \cdot \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1 \cdot 1=1
$$

3. Give examples of f and g such that $2^{f} \nsim 2^{g}$.

Solution.

$$
\begin{aligned}
f(n) & =n+1 \\
g(n) & =n .
\end{aligned}
$$

Then $f \sim g$ since $\lim (n+1) / n=1$, but $2^{f}=2^{n+1}=2 \cdot 2^{n}=2 \cdot 2^{g}$ so

$$
\lim \frac{2^{f}}{2^{g}}=2 \neq 1
$$

4. Show that \sim is an equivalence relation

Solution. (a) Reflexive: $f \sim f$ since $f(x) / f(x)=1$ for all x (assuming $f(x) \neq 0$), so $\lim _{x \rightarrow \infty} f(x) / f(x)=1$
(b) Symmetric: $f \sim g$ implies $g \sim f$ since if $\lim _{x \rightarrow \infty} f(x) / g(x)=1$, then by the laws of limits $\lim _{x \rightarrow \infty} g(x) / f(x)=1$
(c) Transitive: $f \sim g$ and $g \sim h$ implies $f \sim h$: if $\lim _{x \rightarrow \infty} f(x) / g(x)=1$, and $\lim _{x \rightarrow \infty} g(x) / h(x)=1$, then multiplying the limits we get

$$
\lim _{x \rightarrow \infty} f(x) / h(x)=\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)} \times \frac{g(x)}{h(x)}=1
$$

5. Show that Θ is an equivalence relation

Solution. (a) Reflexive: $\lim _{x \rightarrow \infty} f(x) / f(x)=1<\infty$, trivial.
(b) Symmetric: If $f=\Theta(g)$, we wish to show $g=\Theta(f)$. From the definiton: $\lim _{x \rightarrow \infty} f(x) / g(x)=c$ for some non-zero finite constant c. Hence $\lim _{x \rightarrow \infty} g(x) / f(x)=$ $1 / c$. Also a non-zero finite constant, so $g=\Theta(f)$.
(c) Transitive: Want to show $f=\Theta(g), g=\Theta(h)$ then $f=\Theta(h)$. Let $\lim _{x \rightarrow \infty} f(x) / g(x)=$ c_{1} and $\lim _{x \rightarrow \infty} g(x) / h(x)=c_{2}$. Then $\lim _{x \rightarrow \infty} f(x) / h(x)=\lim _{x \rightarrow \infty} f(x) / g(x) \times$ $g(x) / h(x)=c_{1} \times c_{2}$. Since both c_{1} and c_{2} are non-zero and finite, so is $c_{1} \times c_{2}$.

3 More Asymptotic Notation

1. Show that

$$
(a n)^{b / n} \sim 1
$$

where a, b are positive constants and \sim denotes asymptotic equality. Hint $a n=a 2^{\log _{2} n}$.

Solution.

$$
(a n)^{b / n}=\left(a^{b}\right)^{1 / n} \cdot 2^{\left(b \log _{2} n\right) / n} \rightarrow 1 \cdot 2^{0}=1,
$$

as $n \rightarrow \infty$.
2. You may assume that if $f(n) \geq 1$ and $g(n) \geq 1$ for all n, then $f \sim g \Rightarrow f^{\frac{1}{n}} \sim g^{\frac{1}{n}}$. Show that

$$
\sqrt[n]{n!}=\Theta(n)
$$

Solution.

$$
\begin{align*}
\sqrt[n]{n!} & \sim\left((2 \pi n)^{\frac{1}{2}}\left(\frac{n}{e}\right)^{n}\right)^{1 / n} \tag{Stirling}\\
& \sim(2 \pi n)^{\frac{1}{2 n}} \frac{n}{e} \\
& \sim 1 \cdot \frac{n}{e} \\
& =\Theta(n)
\end{align*}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

