Problems for Recitation 6

1 Graph Basics

Let $G=(V, E)$ be a graph. Here is a picture of a graph.

Recall that the elements of V are called vertices, and those of E are called edges. In this example the vertices are $\{A, B, C, D, E, F, G\}$ and the edges are

$$
\{A-B, B-D, C-D, A-C, E-F, C-E, E-G\} .
$$

Deleting some vertices or edges from a graph leaves a subgraph. Formally, a subgraph of $G=(V, E)$ is a graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where V^{\prime} is a nonempty subset of V and E^{\prime} is a subset of E. Since a subgraph is itself a graph, the endpoints of every edge in E^{\prime} must be vertices in V^{\prime}. For example, $V^{\prime}=\{A, B, C, D\}$ and $E^{\prime}=\{A-B, B-D, C-D, A-C\}$ forms a subgraph of G.

In the special case where we only remove edges incident to removed nodes, we say that G^{\prime} is the subgraph induced on V^{\prime} if $E^{\prime}=\left\{\left(x-y \mid x, y \in V^{\prime}\right.\right.$ and $\left.x-y \in E\right\}$. In other words, we keep all edges unless they are incident to a node not in V^{\prime}. For instance, for a new set of vertices $V^{\prime}=\{A, B, C, D\}$, the induced subgraph G^{\prime} has the set of edges $E^{\prime}=$ $\{A-B, B-D, C-D, A-C\}$.

2 Problem 1

An undirected graph G has width w if the vertices can be arranged in a sequence

$$
v_{1}, v_{2}, v_{3}, \ldots, v_{n}
$$

such that each vertex v_{i} is joined by an edge to at most w preceding vertices. (Vertex v_{j} precedes v_{i} if $j<i$.) Use induction to prove that every graph with width at most w is $(w+1)$-colorable.
(Recall that a graph is k-colorable iff every vertex can be assigned one of k colors so that adjacent vertices get different colors.)

3 Problem 2

A planar graph is a graph that can be drawn without any edges crossing.

1. First, show that any subgraph of a planar graph is planar.
2. Also, any planar graph has a node of degree at most 5 . Now, prove by induction that any graph can be colored in at most 6 colors.

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

