Problem Set 8

Problem 1. [25 points] Find Θ bounds for the following divide-and-conquer recurrences. Assume $T(1)=1$ in all cases. Show your work.
(a) [5pts] $T(n)=8 T(\lfloor n / 2\rfloor)+n$
(b) $[5 \mathrm{pts}] T(n)=2 T(\lfloor n / 8\rfloor+1 / n)+n$
(c) $[5 \mathrm{pts}] T(n)=7 T(\lfloor n / 20\rfloor)+2 T(\lfloor n / 8\rfloor)+n$
(d) $[5 \mathrm{pts}] T(n)=2 T(\lfloor n / 4\rfloor+1)+n^{1 / 2}$
(e) $[5 \mathrm{pts}] T(n)=3 T\left(\left\lfloor n / 9+n^{1 / 9}\right\rfloor\right)+1$

Problem 2. [30 points] It is easy to misuse induction when working with asymptotic notation.

False Claim If

$$
\begin{gathered}
T(1)=1 \text { and } \\
T(n)=4 T(n / 2)+n
\end{gathered}
$$

Then $T(n)=O(n)$.
False Proof We show this by induction. Let $P(n)$ be the proposition that $T(n)=O(n)$.
Base Case: $P(1)$ is true because $T(1)=1=O(1)$.
Inductive Case: For $n \geq 1$, assume that $P(n-1), \ldots, P(1)$ are true. We then have that

$$
T(n)=4 T(n / 2)+n=4 O(n / 2)+n=O(n)
$$

And we are done.
(a) [5 pts] Identify the flaw in the above proof.
(b) [10 pts] A simple attempt to prove $T(n) \neq O(n)$ via induction ultimately fails. We assume for sake of contradiction that $T(n)=O(n)$. Then there exists positive integer n_{0} and positive real number c such that for all $n \geq n_{0}, T(n) \leq c n$. We then define $P(n)$ as the proposition that $T(n) \leq c n$.
We then proceed with strong induction.
Base Case, $n=n_{0}: P\left(n_{0}\right)$ is true, by assumption.
Inductive Step: We assume $P\left(n_{0}\right), P\left(n_{0}+1\right), \ldots, P(n-1)$ true.
Fill in the rest of this proof attempt, and explain why it doesn't work.
Note: As this problem was updated so late, the graders will be instructed to be exceedingly lenient when grading this.
(c) [5 pts] Using Akra-Bazzi theorem, find the correct asymptotic behavior of this recurrence.
(d) $[10 \mathrm{pts}]$ We have now seen several recurrences of the form $T(n)=a T(\lfloor n / b\rfloor)+n$. Some of them give a runtime that is $O(n)$, and some don't. Find the relationship between a and b that yields $T(n)=O(n)$, and prove that this is sufficient.

Problem 3. [15 points] Define the sequence of numbers A_{i} by
$A_{0}=2$
$A_{n+1}=A_{n} / 2+1 / A_{n}($ for $n \geq 1)$
Prove that $A_{n} \leq \sqrt{2}+1 / 2^{n}$ for all $n \geq 0$.
Problem 4. [30 points] Find closed-form solutions to the following linear recurrences.
(a) $[15 \mathrm{pts}] x_{n}=4 x_{n-1}-x_{n-2}-6 x_{n-3} \quad\left(x_{0}=3, x_{1}=4, x_{2}=14\right)$
(b) $[15 \mathrm{pts}] x_{n}=-x_{n-1}+2 x_{n-2}+n \quad\left(x_{0}=5, x_{1}=-4 / 9\right)$

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

