LECTURE 3

- Readings: Section 1.5
- Review
- Independence of two events
- Independence of a collection of events

Review

$\mathbf{P}(A \mid B)=\frac{\mathbf{P}(A \cap B)}{\mathbf{P}(B)}, \quad$ assuming $\mathbf{P}(B)>0$

- Multiplication rule:
$\mathbf{P}(A \cap B)=\mathbf{P}(B) \cdot \mathbf{P}(A \mid B)=\mathbf{P}(A) \cdot \mathbf{P}(B \mid A)$
- Total probability theorem:
$\mathbf{P}(B)=\mathbf{P}(A) \mathbf{P}(B \mid A)+\mathbf{P}\left(A^{c}\right) \mathbf{P}\left(B \mid A^{c}\right)$
- Bayes rule:

$$
\mathbf{P}\left(A_{i} \mid B\right)=\frac{\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(B \mid A_{i}\right)}{\mathbf{P}(B)}
$$

Models based on conditional probabilities

- 3 tosses of a biased coin:
$\mathbf{P}(H)=p, \mathbf{P}(T)=1-p$

$\mathbf{P}(T H T)=$
$\mathbf{P}(1$ head $)=$
$\mathbf{P}($ first toss is $\mathrm{H} \mid 1$ head $)=$

Independence of two events

- "Defn:" $\mathbf{P}(B \mid A)=\mathbf{P}(B)$
- "occurrence of A provides no information about B's occurrence"
- Recall that $\mathbf{P}(A \cap B)=\mathbf{P}(A) \cdot \mathbf{P}(B \mid A)$
- Defn: $\mathrm{P}(A \cap B)=\mathrm{P}(A) \cdot \mathrm{P}(B)$
- Symmetric with respect to A and B
- applies even if $\mathbf{P}(A)=0$
- implies $\mathbf{P}(A \mid B)=\mathbf{P}(A)$

Conditioning may affect independence

- Conditional independence, given C, is defined as independence under probability law $\mathbf{P}(\cdot \mid C)$
- Assume A and B are independent

- If we are told that C occurred, are A and B independent?

Conditioning may affect independence

- Two unfair coins, A and B :
$\mathbf{P}(H \mid \operatorname{coin} A)=0.9, \mathbf{P}(H \mid \operatorname{coin} B)=0.1$ choose either coin with equal probability

- Once we know it is coin A, are tosses independent?
- If we do not know which coin it is, are tosses independent?
- Compare:
$\mathbf{P}($ toss $11=H)$
\mathbf{P} (toss $11=H \mid$ first 10 tosses are heads)

Independence of a collection of events

- Intuitive definition:

Information on some of the events tells us nothing about probabilities related to the remaining events

- E.g.:
$\mathbf{P}\left(A_{1} \cap\left(A_{2}^{c} \cup A_{3}\right) \mid A_{5} \cap A_{6}^{c}\right)=\mathbf{P}\left(A_{1} \cap\left(A_{2}^{c} \cup A_{3}\right)\right)$
- Mathematical definition:

Events $A_{1}, A_{2}, \ldots, A_{n}$ are called independent if:
$\mathrm{P}\left(A_{i} \cap A_{j} \cap \cdots \cap A_{q}\right)=\mathbf{P}\left(A_{i}\right) \mathbf{P}\left(A_{j}\right) \cdots \mathbf{P}\left(A_{q}\right)$
for any distinct indices i, j, \ldots, q,
(chosen from $\{1, \ldots, n\}$)

Independence vs. pairwise independence

- Two independent fair coin tosses
- A: First toss is H
- B: Second toss is H
$-\mathbf{P}(A)=\mathbf{P}(B)=1 / 2$

- C : First and second toss give same result
$-\mathbf{P}(C)=$
$-\mathbf{P}(C \cap A)=$
$-\mathrm{P}(A \cap B \cap C)=$
$-\mathbf{P}(C \mid A \cap B)=$
- Pairwise independence does not imply independence

The king's sibling

- The king comes from a family of two children. What is the probability that his sibling is female?

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

