LECTURE 24

- Reference: Section 9.3
- Course Evaluations (until 12/16) http://web.mit.edu/subjectevaluation

Outline

- Review
- Maximum likelihood estimation
- Confidence intervals
- Linear regression
- Binary hypothesis testing
- Types of error
- Likelihood ratio test (LRT)

Review

• Maximum likelihood estimation

- Have model with unknown parameters: $X \sim p_X(x; \theta)$
- Pick θ that "makes data most likely"

$\max_{\theta} p_X(x;\theta)$

- Compare to Bayesian MAP estimation:

$$\max_{\theta} p_{\Theta|X}(\theta \mid x) \text{ or } \max_{\theta} \frac{p_{X|\Theta}(x|\theta)p_{\Theta}(\theta)}{p_{Y}(y)}$$

• Sample mean estimate of $\theta = E[X]$

 $\hat{\Theta}_n = (X_1 + \dots + X_n)/n$

- 1α confidence interval $P(\hat{\Theta}_n^- < \theta < \hat{\Theta}_n^+) > 1 - \alpha, \quad \forall \ \theta$
- confidence interval for sample mean
- let z be s.t. $\Phi(z) = 1 \alpha/2$

Regression y Residual (x_i, y_i) $y_i - \hat{\theta}_0 - \hat{\theta}_1 x_i$ (x_i, y_i) $y_i - \hat{\theta}_0 - \hat{\theta}_1 x_i$ (x_i, y_i) $y_i - \hat{\theta}_0 - \hat{\theta}_1 x_i$ (x_i, y_i) (x_i, y_i)

- Data: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- Model: $y \approx \theta_0 + \theta_1 x$

$$\min_{\theta_0,\theta_1} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2 \qquad (*)$$

- One interpretation: $Y_i = \theta_0 + \theta_1 x_i + W_i$, $W_i \sim N(0, \sigma^2)$, i.i.d.
- Likelihood function $f_{X,Y|\theta}(x,y;\theta)$ is:

$$c \cdot \exp\left\{-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i- heta_0- heta_1x_i)^2
ight\}$$

- Take logs, same as (*)
- Least sq. \leftrightarrow pretend W_i i.i.d. normal

Linear regression

 $\mathbf{P}\Big(\hat{\Theta}_n - \frac{z\sigma}{\sqrt{n}} \leq \theta \leq \hat{\Theta}_n + \frac{z\sigma}{\sqrt{n}}\Big) \approx 1 - \alpha$

• Model $y \approx \theta_0 + \theta_1 x$

$$\min_{\theta_0,\theta_1} \sum_{i=1}^n (y_i - \theta_0 - \theta_1 x_i)^2$$

• Solution (set derivatives to zero):

$$\overline{x} = \frac{x_1 + \dots + x_n}{n}, \quad \overline{y} = \frac{y_1 + \dots + y_n}{n}$$
$$\widehat{\theta}_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$
$$\widehat{\theta}_0 = \overline{y} - \widehat{\theta}_1 \overline{x}$$

- Interpretation of the form of the solution
- Assume a model $Y = \theta_0 + \theta_1 X + W$ W independent of X, with zero mean
- Check that

$$\theta_1 = \frac{\operatorname{cov}(X,Y)}{\operatorname{var}(X)} = \frac{\mathbf{E} \left[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y]) \right]}{\mathbf{E} \left[(X - \mathbf{E}[X])^2 \right]}$$

- Solution formula for $\hat{\theta}_1$ uses natural estimates of the variance and covariance

The world of linear regression

- Multiple linear regression:
- data: $(x_i, x'_i, x''_i, y_i), i = 1, ..., n$
- model: $y \approx \theta_0 + \theta x + \theta' x' + \theta'' x''$
- formulation:

$$\min_{\theta,\theta',\theta''}\sum_{i=1}^n (y_i - \theta_0 - \theta x_i - \theta' x_i' - \theta'' x_i'')^2$$

- Choosing the right variables
- model $y \approx \theta_0 + \theta_1 h(x)$ e.g., $y \approx \theta_0 + \theta_1 x^2$
- work with data points $(y_i, h(x))$
- formulation:

$$\min_{\theta} \sum_{i=1}^{n} (y_i - \theta_0 - \theta_1 h_1(x_i))^2$$

The world of regression (ctd.)

- In practice, one also reports
- Confidence intervals for the θ_i
- "Standard error" (estimate of σ)
- R^2 , a measure of "explanatory power"

Some common concerns

- Heteroskedasticity
- Multicollinearity
- Sometimes misused to conclude causal relations
- etc.

Binary hypothesis testing

- Binary θ ; new terminology:
- null hypothesis H_0 : $X \sim p_X(x; H_0)$ [or $f_X(x; H_0)$]
- alternative hypothesis H_1 : $X \sim p_X(x; H_1)$ [or $f_X(x; H_1)$]
- Partition the space of possible data vectors Rejection region *R*: reject *H*₀ iff data ∈ *R*
- Types of errors:
- Type I (false rejection, false alarm):
 H₀ true, but rejected

$$\alpha(R) = \mathbf{P}(X \in R; H_0)$$

 Type II (false acceptance, missed detection):
 H₀ false, but accepted

$$\beta(R) = \mathbf{P}(X \notin R; H_1)$$

Likelihood ratio test (LRT)

 Bayesian case (MAP rule): choose H₁ if: P(H₁ | X = x) > P(H₀ | X = x) or

$$\frac{\mathbf{P}(X = x \mid H_1)\mathbf{P}(H_1)}{\mathbf{P}(X = x)} > \frac{\mathbf{P}(X = x \mid H_0)\mathbf{P}(H_0)}{\mathbf{P}(X = x)}$$

or
$$\mathbf{P}(X = x \mid H_1) = \mathbf{P}(H_0)$$

$$\frac{1}{\mathbf{P}(X=x\mid H_0)} > \frac{1}{\mathbf{P}(H_1)}$$

(likelihood ratio test)

• Nonbayesian version: choose H₁ if

$$\frac{\mathbf{P}(X = x; H_1)}{\mathbf{P}(X = x; H_0)} > \xi \quad \text{(discrete case)}$$

$$\frac{f_X(x; H_1)}{f_Y(x; H_0)} > \xi \quad \text{(continuous case)}$$

- threshold ξ trades off the two types of error
- choose ξ so that P(reject $H_0; H_0) = \alpha$ (e.g., $\alpha = 0.05$)

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.