LECTURE 17

Markov Processes - II

- Readings: Section 7.3

Lecture outline

- Review
- Steady-State behavior
- Steady-state convergence theorem
- Balance equations
- Birth-death processes

Review

- Discrete state, discrete time, time-homogeneous
- Transition probabilities $p_{i j}$
- Markov property
- $r_{i j}(n)=\mathbf{P}\left(X_{n}=j \mid X_{0}=i\right)$
- Key recursion:
$r_{i j}(n)=\sum_{k} r_{i k}(n-1) p_{k j}$

Periodic states

- The states in a recurrent class are periodic if they can be grouped into $d>1$ groups so that all transitions from one group lead to the next group

Steady-State Probabilities

- Do the $r_{i j}(n)$ converge to some π_{j} ? (independent of the initial state i)
- Yes, if:
- recurrent states are all in a single class, and
- single recurrent class is not periodic
- Assuming "yes," start from key recursion

$$
r_{i j}(n)=\sum_{k} r_{i k}(n-1) p_{k j}
$$

- take the limit as $n \rightarrow \infty$

$$
\pi_{j}=\sum_{k} \pi_{k} p_{k j}, \quad \text { for all } j
$$

- Additional equation:

$$
\sum_{j} \pi_{j}=1
$$

Visit frequency interpretation

$$
\pi_{j}=\sum_{k} \pi_{k} p_{k j}
$$

- (Long run) frequency of being in $j: \pi_{j}$
- Frequency of transitions $k \rightarrow j: \pi_{k} p_{k j}$
- Frequency of transitions into j : $\sum_{k} \pi_{k} p_{k j}$

Example

Birth-death processes

- Special case: $p_{i}=p$ and $q_{i}=q$ for all i $\rho=p / q=$ load factor

$$
\begin{gathered}
\pi_{i+1}=\pi_{i} \frac{p}{q}=\pi_{i} \rho \\
\pi_{i}=\pi_{0} \rho^{i}, \quad i=0,1, \ldots, m
\end{gathered}
$$

- Assume $p<q$ and $m \approx \infty$
$\pi_{0}=1-\rho$
$\mathbf{E}\left[X_{n}\right]=\frac{\rho}{1-\rho} \quad$ (in steady-state)

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

