LECTURE 16

Markov Processes – I

• **Readings:** Sections 7.1–7.2

Lecture outline

- Checkout counter example
- Markov process definition
- *n*-step transition probabilities
- Classification of states

Checkout counter model

- Discrete time $n = 0, 1, \ldots$
- Customer arrivals: Bernoulli(p)
- geometric interarrival times
- Customer service times: geometric(q)
- "State" X_n: number of customers at time n

Finite state Markov chains

- X_n : state after *n* transitions
- belongs to a finite set, e.g., $\{1,\ldots,m\}$
- X_0 is either given or random
- Markov property/assumption: (given current state, the past does not matter)

$$p_{ij} = \mathbf{P}(X_{n+1} = j \mid X_n = i)$$

= $\mathbf{P}(X_{n+1} = j \mid X_n = i, X_{n-1}, \dots, X_0)$

- Model specification:
- identify the possible states
- identify the possible transitions
- identify the transition probabilities

n-step transition probabilities

• State occupancy probabilities, given initial state *i*:

$$r_{ij}(n) = \mathbf{P}(X_n = j \mid X_0 = i)$$

Time 0

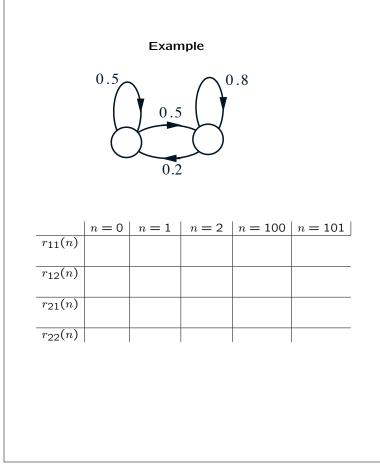
$$r_{i1}(n-1)$$
 : p_{1j}
: $r_{ik}(n-1)$: p_{kj}
: $r_{im}(n-1)$: p_{mj}

- Key recursion:

$$r_{ij}(n) = \sum_{k=1}^{m} r_{ik}(n-1)p_{kj}$$

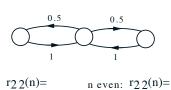
- With random initial state:

$$P(X_n = j) = \sum_{i=1}^{m} P(X_0 = i)r_{ij}(n)$$



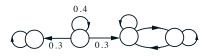
Generic convergence questions:

• Does $r_{ij}(n)$ converge to something?



n odd: $r_{22}(n) =$

• Does the limit depend on initial state?

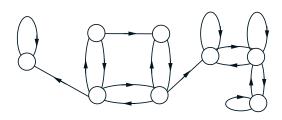


r11(n)= $r_{31}(n) =$

 $r_{21}(n) =$

Recurrent and transient states

- State *i* is **recurrent** if: starting from *i*, and from wherever you can go, there is a way of returning to \boldsymbol{i}
- If not recurrent, called transient



- *i* transient: $\mathbf{P}(X_n=i)\to \mathbf{0},$ i visited finite number of times
- Recurrent class: collection of recurrent states that "communicate" with each other and with no other state

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.