LECTURE 13

The Bernoulli process

• Readings: Section 6.1

Lecture outline

- Definition of Bernoulli process
- Random processes
- Basic properties of Bernoulli process
- Distribution of interarrival times
- The time of the *k*th success
- Merging and splitting

The Bernoulli process

- A sequence of independent Bernoulli trials
- At each trial, i:
- $P(success) = P(X_i = 1) = p$
- $P(failure) = P(X_i = 0) = 1 p$
- Examples:
- Sequence of lottery wins/losses
- Sequence of ups and downs of the Dow Jones
- Arrivals (each second) to a bank
- Arrivals (at each time slot) to server

Random processes

- First view: sequence of random variables *X*₁*, X*₂*,...*
- $\mathbf{E}[X_t] =$
- $Var(X_t) =$
- Second view: what is the right sample space?
- $P(X_t = 1 \text{ for all } t) =$
- Random processes we will study:
- Bernoulli process (memoryless, discrete time)
- Poisson process (memoryless, continuous time)
- Markov chains
 (with memory/dependence across time)

Number of successes S in n time slots

- $\mathbf{P}(S=k) =$
- $\mathbf{E}[S] =$
- Var(S) =

Interarrival times	Time of the <i>k</i> th arrival
• T ₁ : number of trials until first success	• Given that first arrival was at time t
$- P(T_1 = t) =$	additional time, T_2 , until next arrival
 Memoryless property 	 has the same (geometric) distribution
$- E[T_1] =$	- independent of T_1
$- Var(T_1) =$	• Y_k : number of trials to k th success
 If you buy a lottery ticket every day, what is the distribution of the length of the first string of losing days? 	$- E[Y_k] =$ $- Var(Y_k) =$ $- P(Y_k = t) =$

Splitting of a Bernoulli Process

(using independent coin flips)

yields Bernoulli processes

Merging of Indep. Bernoulli Processes

yields a Bernoulli process (collisions are counted as one arrival) 6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.