Recitation 6 September 28, 2010

- 1. Consider an experiment in which a fair four-sided die (with faces labeled 0, 1, 2, 3) is thrown once to determine how many times a fair coin is to be flipped. In the sample space of this experiment, random variables N and K are defined by
 - N = the result of the die roll
 - K = the total number of heads resulting from the coin flips
 - (a) Determine and sketch $p_N(n)$
 - (b) Determine and tabulate $p_{N,K}(n,k)$
 - (c) Determine and sketch $p_{K|N}(k \mid 2)$
 - (d) Determine and sketch $p_{N|K}(n \mid 2)$
- 2. Consider an outcome space comprising eight equally likely event points, as shown below:

- (a) Which value(s) of x maximize(s) $\mathbf{E}[Y | X = x]$?
- (b) Which value(s) of $y \ maximize(s) \ var(X | Y = y)$?
- (c) Let $R = \min(X, Y)$. Prepare a neat, fully labeled sketch of $p_R(r)$,
- (d) Let A denote the event $X^2 \ge Y$. Determine numerical values for the quantities $\mathbf{E}[XY]$ and $\mathbf{E}[XY \mid A]$.
- 3. Example 2.17. Variance of the geometric distribution. You write a software program over and over, and each time there is probability p that it works correctly, independent of previous attempts. What is the variance of X, the number of tries until the program works correctly?

MIT OpenCourseWare http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.