Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science 6.041/6.431: Probabilistic Systems Analysis

Recitation 6

September 28, 2010

1. Consider an experiment in which a fair four-sided die (with faces labeled $0,1,2,3$) is thrown once to determine how many times a fair coin is to be flipped. In the sample space of this experiment, random variables N and K are defined by

- $N=$ the result of the die roll
- $K=$ the total number of heads resulting from the coin flips
(a) Determine and sketch $p_{N}(n)$
(b) Determine and tabulate $p_{N, K}(n, k)$
(c) Determine and sketch $p_{K \mid N}(k \mid 2)$
(d) Determine and sketch $p_{N \mid K}(n \mid 2)$

2. Consider an outcome space comprising eight equally likely event points, as shown below:

(a) Which value(s) of x maximize(s) $\mathbf{E}[Y \mid X=x]$?
(b) Which value(s) of y maximize (s) $\operatorname{var}(X \mid Y=y)$?
(c) Let $R=\min (X, Y)$. Prepare a neat, fully labeled sketch of $p_{R}(r)$,
(d) Let A denote the event $X^{2} \geq Y$. Determine numerical values for the quantities $\mathbf{E}[X Y]$ and $\mathbf{E}[X Y \mid A]$.
3. Example 2.17. Variance of the geometric distribution. You write a software program over and over, and each time there is probability p that it works correctly, independent of previous attempts. What is the variance of X, the number of tries until the program works correctly?

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

