
6.041 Probabilistic Systems Analysis	 Coursework 
6.431 Applied Probability 

–	 Quiz 1 (October 12, 12:05-12:55pm) 17% 
•	 Staff: 

–	 Quiz 2 (November 2, 7:30-9:30pm) 30% 
–	 Lecturer: John Tsitsikli  –	 Final exam (scheduled by registrar) 40% 

–	 Weekly homework (best 9 of 10) 10%

–	 Attendance/participation/enthusiasm in 3%
recitations/tutorials 

Pick up and

	         

•	        read course information handout

•	 Turn in recitation and tutorial scheduling form

 

• Collaboration policy described in course info handout 

(last sheet of course information handout) 

	 Text: Introduction to Probability, 2nd Edition, 

•	 Pick up copy of slides 

•
D. P. Bertsekas and J. N. Tsitsiklis, Athena Scientific, 2008 

	  

Read the text! 

LECTURE 1	 Sample space Ω 

•	 Readings: Sections 1.1, 1.2 • “List” (set) of possible outcomes 

• List must be: 

Lecture outline – Mutually exclusive 

–	 Collectively exhaustive •	 Probability as a mathematical framework 
for reasoning about uncertainty • Art: to be at the “right” granularity 

•	 Probabilistic models 

–	 sample space 

–	 probability law 

•	 Axioms of probability 

•	 Simple examples 

s

1



Sample space: Discrete example Sample space: Continuous example 

• Two rolls of a tetrahedral die Ω = {(x, y) | 0 ≤ x, y ≤ 1} 
– Sample space vs. sequential description 

y 
1,1

1 1,2 
1,3 1 
1,4 

4 2 

Y 3  = Second 
roll 32  

1 x 
1 

1 2 3 4 4 
X = First roll 4,4 

Probability axioms Probability law: Example with finite sample space 

• Event: a subset of the sample space 4 
• Probability is assigned to events 

Y 3 = Second 
roll 

2 
Axioms: 

11. Nonnegativity: P(A) ≥ 0 
1 2 3 42. Normalization: P(Ω) = 1  

X = First roll 
3. Additivity: If A ∩ B = Ø, then P(A ∪ B) =  P(A) +  P(B) 

• Let every possible outcome have probability 1/16 

– P((X,Y )   is (1,1) or (1,2)) = • P({s1, s2, . . . , sk}) = P({s1}) +  · · ·+ P({sk}) 
–= P( X = 1 ) =P(s ) +  {  

1  · · ·+ P(sk) }

– P(X + Y is odd) = • Axiom 3 needs strengthening 
• Do weird sets have probabilities? – P(min(X,Y ) = 2) = 
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Discrete uniform law Continuous uniform law 

• Let all outcomes be equally likely • Two “random” numbers in [0,1]. 
y 

• Then, 1 
number of elements of A 

P(A) =  
total number of sample points 

 x 
• Computing probabilities 1≡ counting 

 Uniform law: Probability = Area • Defines fair coins, fair dice, well-shuffled decks •

– P(X + Y ≤ 1/2) = ? 

– P( (X,Y ) = (0.5,0.3) ) 

Probability law: Ex. w/countably infinite sample space 

• Sample space: {1,2, . . .}
    −n – We are given P(n) = 2 , n = 1,2, . . .  

– Find P(outcome is even) Remember! 
p 

1/2
Turn •  in recitation/tutorial scheduling form now 

1/4      
1/8 

1/16 …..       

1 2 3 4 

Tutorials start next week

1 1 1 1

     

  
P({2,4,6, . . .}) = P (2) + P(4) +  = + + +  = 

•

· · ·
22 24 26 · · ·

3 

• Countable additivity axiom (needed for this calculation): 
If A1, A2, . . .  are disjoint events, then: 

P(A1 ∪ A2 ∪ · · · ) =  P(A1) +  P(A2) +  · · ·  
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LECTURE 2 Review of probability models

• Readings: Sections 1.3-1.4 • Sample space Ω

– Mutually exclusive
Collectively exhaustive

Lecture outline
– Right granularity

• Review • Event: Subset of the sample space

• Conditional probability
Allocation of probabilities to events

• Three important tools:
•

1. P(A) ≥ 0

– Multiplication rule 2. P(Ω) = 1

3. If– Total probability theorem A ∩B = Ø,
then P(A ∪B) = P(A) + P(B)

– Bayes’ rule
3’. If A1, A2, . . . are disjoint events, then:

P(A1 ∪A2 ∪ · · · ) = P(A1) + P(A2) + · · ·

• Problem solving:

– Specify sample space

– Define probability law

– Identify event of interest

– Calculate...

Conditional probability Die roll example

4A

3
Y = Second 

B
        roll

2

1

• P(A | B) = probability of A,
that B occurred 1 2 3

given 4

is our new universe X– B  = First roll

• Definition: Assuming P(B) = 0, • Let B be the event: min(X, Y ) = 2

P(A
P(A B) =

∩B)
| • Let M = max(X, Y )

P(B)

P(A | B) undefined if P(B) = 0 • P(M = 1 | B) =

• P(M = 2 | B) =

$
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Models based on conditional Multiplication rule

probabilities

P(A B C) = P(A) P(B A) P(C A B)
• Event A: Airplane is flying above

∩ ∩ · | · | ∩

Event B: Something registers on radar
screen

A

U

B P(C | A

U

   B)
P(B | A)=0.99 A

U

B

U

C

P(B | A)
cP(B  | A)=0.01

P(A)=0.05
A

cP(B  | A)
cA

U

B

U

CP(A)

A

U

cBcP(A )=0.95
cA

U

cB

U

CcP(B | A )=0.10

c cP(B  | A )=0.90 cP(A )

cA

P(A ∩B) =

P(B) =

P(A | B) =

Total probability theorem Bayes’ rule

• Divide and conquer • “Prior” probabilities P(Ai)
– initial “beliefs”

• Partition of sample space into A1, A2, A3
• We know P(B | Ai) for each i

• Have P(B | Ai), for every i
• Wish to compute P(Ai | B)

A
– revise “beliefs”, given that B occurred

1

B

A
1

B

A A2 3

• One way of computing AP( AB): 2 3

P(B) = P(A1)P(B | A1)

+ P(A2)P(B | A2)
P(+ ( ) ( | ) Ai ∩B)P A3 P B A3 P(Ai | B) =

P(B)

P(Ai)P(B
=

| Ai)

P(B)

P(A )P(B A )
= ∑ i | i

j P(Aj)P(B | Aj)

      

Multiplication rule

P(A ∩B ∩ C) = P(A)P(B | A)P(C | A ∩B)
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LECTURE 3 Models based on conditional
probabilities

• Readings: Section 1.5
• 3 tosses of a biased coin:

• Review P(H) = p, P(T ) = 1− p

• Independence of two events p HHH

• Independence of a collection of events p
HHT1 -  p

p HTH
Review p 1 -  p

1 -  p HTT

P(A ∩B)
) 0

p
P(A | B) = , assuming P(B > THH

P(B) 1 -  p p
1 -  p THT

• Multiplication rule: p TTH

1 -  p

P(A ∩B) = P(B) · P(A | B) = P(A) · P(B | A)
1 -  p TTT

• Total probability theorem:

P( ) = P( )P( | ) + P( c)P( | c P(THT ) =B A B A A B A )

• Bayes rule: P(1 head) =
P(Ai)P(B Ai)P(Ai | B) =

|
P(B) P(first toss is H | 1 head) =

Independence of two events Conditioning may affect independence

• “Defn:” P(B | A) = P(B) • Conditional independence, given C,
is defined as independence

– “occurrence of A
under probability law P(

provides no information
· | C)

about B’s occurrence”

• Assume A and B are independent
• Recall that P(A ∩B) = P(A) · P(B | A)

• Defn: P(A ∩B) = P(A) · P(B)
C

A

• Symmetric with respect to A and B
B

– applies even if P(A) = 0

– implies P(A | B) = P(A) • If we are told that C occurred,
are A and B independent?
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Conditioning may affect independence Independence of a collection of events

• Two unfair coins, A and B: • Intuitive definition:
P(H | coin A) = 0.9, P(H | coin B) = 0.1 Information on some of the events tells
choose either coin with equal probability

us nothing about probabilities related to
0.9 the remaining events

0.10.9 – E.g.:
Coin A

P( ∩ ( c ∪ ) | ∩ c ) = P( ∩ ( c
0.9 A1 A2 A3 A5 A6 A1 A2 ∪A3))

0.5 0.1
0.1

• Mathematical definition:
0.1 Events A1, A2, . . . , An

0.5
0.1

0.9
are called independent if:

Coin B 0.1

0.9
P(Ai∩Aj∩· · ·∩Aq) = P(Ai)P(Aj) · · ·P(Aq)

0.9 for any distinct indices i, j, . . . , q,
(chosen from {1, . . . , n )

• Once we know it is coin A, are tosses
}

independent?

• If we do not know which coin it is, are
tosses independent?

– Compare:
P(toss 11 = H)
P(toss 11 = H | first 10 tosses are heads)

Independence vs. pairwise The king’s sibling

independence
• The king comes from a family of two

• Two independent fair coin tosses children. What is the probability that

– A: First toss is H his sibling is female?

– B: Second toss is H

– P(A) = P(B) = 1/2

HH HT

TH TT

– C: First and second toss give same
result

– P(C) =

– P(C ∩A) =

– P(A ∩B ∩ C) =

– P(C | A ∩B) =

• Pairwise independence does not

imply independence
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LECTURE 4 Discrete uniform law

• Readings: Section 1.6 • Let all sample points be equally likely

• Then,

Lecture outline number of elements of A A
P(A) = =

| |
total number of sample points Ω

• Principles of counting
| |

• Just count. . .• Many examples

– permutations

– k-permutations

– combinations

– partitions

• Binomial probabilities

Basic counting principle Example

• r stages • Probability that six rolls of a six-sided die
• ni choices at stage i all give different numbers?

– Number of outcomes that
make the event happen:

– Number of elements
in the sample space:

• Number of choices is: n1n2 · · ·nr
– Answer:

• Number of license plates
with 3 letters and 4 digits =

• . . . if repetition is prohibited =

• Permutations: Number of ways
of ordering n elements is:

• Number of subsets of {1, . . . , n} =

8



Combinations Binomial probabilities

•
�n�

: number of k-element subsets
k • n independent coin tosses

of a given n-element set – P(H) = p

• Two ways of constructing an ordered
sequence of k distinct items:

P(HTTHHH) =
– Choose the k items one at a time:

•

n!
n(n−1) · · · (n−k+1) = choices

( − )! • (sequence) = # heads(1− )# tails
n k P p p

– Choose k items, then order them
(k! possible orders)

P(k heads) =
�

P(seq.)
• Hence:

�
k− ad seq.

n�
he

n!
· k! =

k (n− k)! = (# of k−head seqs ) k
p (1− k

p)n. · −

�n
k

� n!
= = k(1 )n−k

p
k!(n− k)!

�n
k

�
p −

k

�n
=

=0

�n
k

�

Coin tossing problem Partitions

• event B: 3 out of 10 tosses were “heads”. • 52-card deck, dealt to 4 players

– Given that B occurred, • Find P(each gets an ace)
what is the (conditional) probability

• Outcome: a partition of the 52 cardsthat the first 2 tosses were heads?

– number of outcomes:
• All outcomes in set B are equally likely:

52!
probability 3

p (1− p)7
13! 13! 13! 13!

– Conditional probability law is uniform • Count number of ways of distributing the
four aces: 4 3 2

• Number of outcomes in B:
· ·

• Count number of ways of dealing the

• Out of the outcomes in B, remaining 48 cards

how many start with HH? 48!

12! 12! 12! 12!

• Answer:

48!
4 · 3 · 2

12! 12! 12! 12!
52!

13! 13! 13! 13!
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LECTURE 5 Random variables

• Readings: Sections 2.1-2.3, start 2.4 • An assignment of a value (number) to
every possible outcome

Lecture outline
• Mathematically: A function

• Random variables from the sample space Ω to the real
numbers

• Probability mass function (PMF)
– discrete or continuous values

• Expectation

• Can have several random variables• Variance
defined on the same sample space

• Notation:

– random variable X

– numerical value x

Probability mass function (PMF) How to compute a PMF pX(x)
– collect all possible outcomes for which

• (“probability law”, X is equal to x

“probability distribution” of X) – add their probabilities
– repeat for all x

• Notation:
• Example: Two independent rools of a

pX(x) = P(X = x) fair tetrahedral die
= P({ω ∈ Ω s.t. X(ω) = x})

F : outcome of first throw
∑ S: outcome of second throw

• pX(x) ≥ 0 x pX(x) = 1 X = min(F, S)

• Example: X=number of coin tosses
until first head 4

– assume independent tosses,
3

P(H) = p > 0
S = Second roll

2

pX(k) = P(X = k)

= P(TT · · ·TH) 1

= (1− p)k−1p, k = 1,2, . . . 1 2 3 4

F = First roll

– geometric PMF

pX(2) =

10



Binomial PMF Expectation

• X: number of heads in n independent • Definition:

coin tosses E[X] =
∑

xpX(x)
x

• P(H) = p

• Interpretations:
• Let n = 4 – Center of gravity of PMF

– Average in large number of repetitions
pX(2) = P(HHTT ) + P(HTHT ) + P(HTTH) of the experiment

+P(THHT ) + P(THTH) + P(TTHH) (to be substantiated later in this course)

= 6 2(1− )2p p • Example: Uniform on 0,1, . . . , n

4
=

(

2

)
2 − )2p (1 p p (x )X

In general:
1/(n+1)

k )n−kpX(k) =
(n)

p (1−p , k = 0,1, . . . , n . . .
k

0 1 x 
n- 1 n

1 1 1
E[X] = 0× +1× +· · ·+n =

n + 1 n + 1
×

n + 1

Properties of expectations Variance

• Let X be a r.v. and let Y = g(X) Recall: E[g(X)] =
∑

g(x)pX(x)
x

– Hard: E[Y ] =
∑

ypY (y)
y • Second moment: E[ 2 2X ] =

∑
x x p (

– Easy: E[Y ] =
∑

X x)

g(x)pX(x)
x • Variance

• Caution: In general, E[g(X)] = g(E[X]) var(X) = E
[
(X − E[X])2

]

=
∑

( [ ])2x E X pX(x)
x

−

2erties: If α, β are constants, then: = E[ 2Prop X ]− (E[X])

• E[α] =
Properties:

• E[αX] = • var(X) ≥ 0

• E[αX + β] = • var(αX + β) = 2α var(X)

%
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LECTURE 6 Review

Random variable X: function from• Readings: Sections 2.4-2.6
•

sample space to the real numbers

Lecture outline • PMF (for discrete random variables):
pX(x) = P(X = x)

• Review: PMF, expectation, variance • Expectation:

• Conditional PMF E[X] =
∑

xpX(x)
x

• Geometric PMF
E[g(X)] = g(x)p (x)

• X
Total expectation theorem

∑

x

• Joint PMF of two random variables E[αX + β] = αE[X] + β

• E
[
X − E[X]

]
=

var(X) = E

=

[
( 2X − E[X])

(x E[X])2p

]

=

∑

x
− X(x)

E[ 2X ]− ( 2E[X])

Standard deviation: σX =
√

var(X)

Random speed Average speed vs. average time

• Traverse a 200 mile distance at constant • Traverse a 200 mile distance at constant
but random speed V but random speed V

p  (v ) 1/2 1/2 p  (v ) 1/2 1/2V V

1 200 v 1 200 v

• d = 200, T = t(V ) = 200/V • time in hours = T = t(V ) =

• E[T ] = E[t(V )] =
∑

v t(v)pV (v) =
• E[V ] =

• E[TV ] = 200 = E[T ] · E[V ]

• var(V ) = • E[200/V ] = E[T ] = 200/E[V ].

• σV =

"

"
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Conditional PMF and expectation Geometric PMF

• X: number of independent coin tosses• pX|A(x) = P(X = x | A)
until first head

• E[X | A] =
∑

xp (x) ( ) = (1− )k−1
X p

x
|A pX k p, k = 1,2, . . .

∞ ∞
p  (x ) E[X] = (1 kkp ( 1

X
∑

X k) = p
k

∑
k −

=1
− p)

k=1

• Memoryless property: Given that X > 2,
1/4

the r.v. X − 2 has same geometric PMF

p   
p (k) p (k)
X X |X>2

2p(1-p)
p  

1 2 3 4 x  

... ...
• Let A = {X ≥ 2} k1 3 k

p (k)X-  2|X>2
pX|A(x) =

p   

E[X | A] =
...

1 k

Total Expectation theorem Joint PMFs

• Partition of sample space • pX,Y (x, y) = P(X = x and Y = y)
into disjoint events A1, A2, . . . , An

y

A
1 4 1/20 2/20 2/20

B

3 2/20 4/20 1/20 2/20

2 1/20 3/20 1/20

A A 1
2 3 1/20

x
1 2 3 4

P(B) = P(A1)P(B | A1)+· · ·+P(An)P(B | An) • pX,Y (x, y) =
pX(x) = P(A1)pX A (x)+· · ·+P(An)pX A (x)

n

∑

x

∑

y| 1 |

E[X] = P(A1)E[X | A1]+· · ·+P(An)E[X | An] • pX(x) =
∑

pX,Y (x, y)
y

• Geometric example: pX,Y (x, y)
pX Y (x y) = P(X = x Y = y) =

A1 : {X = 1}, A2 : {X > 1
•

} | | |
pY (y)

E[X] = P(X = 1)E[X | X = 1] •
∑

pX Y (x | y) =|
+P(X > 1)E[X | X > 1] x

• Solve to get E[X] = 1/p
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LECTURE 7 Review

• Readings: Finish Chapter 2
pX(x) = P(X = x)

Lecture outline
pX,Y (x, y) = P(X = x, Y = y)

• Multiple random variables
p )

– Joint PMF X Y (x | y) = P(X = x Y = y| |

– Conditioning

– Independence
pX(x) =

• More on expectations

∑
pX,Y (x, y)

y

• Binomial distribution revisited pX,Y (x, y) = pX(x)pY X(y x| | )

• A hat problem

Independent random variables Expectations

pX,Y,Z(x, y, z) = pX(x)pY X(y | x)pZ X,Y (z | x, y) [| | E X] =
∑

xpX(x)
x

E[g(X, Y )] = g(x, y)pX,Y (x, y)• Random variables X, Y , Z are
x y

independent if:

∑ ∑

pX,Y,Z(x, y, z) = pX(x) · pY (y) · pZ(z) • In general: E[g(X, Y )] = g E[X],E[Y ]

for all x, y, z

( )

y • E[αX + β] = αE[X] + β

4 1/20 2/20 2/20 • E[X + Y + Z] = E[X] + E[Y ] + E[Z]
3 2/20 4/20 1/20 2/20

2 1/20 3/20 1/20 • If X, Y are independent:

1 1/20
– E[XY ] = E[X]E[Y ]

x
1 2 3 4

– E[g(X)h(Y )] = E[g(X)]
• Independent?

· E[h(Y )]

• What if we condition on X ≤ 2
and Y ≥ 3?

#
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Variances Binomial mean and variance

• Var(aX) = 2a Var(X) • X = # of successes in n independent
trials

• Var(X + a) = Var(X)
– probability of success p

n n• Let Z = X + Y . kE[X] = k p (1
k

− p)n−k

If X, Y are independent: k

∑

=0

( )

Var(X + Y ) = Var(X) + Var(Y )

1, if success in trial i,• Xi = 0, otherwise

• Examples:

E[Xi] =
– If X = Y , Var(X + Y ) =

•

– If X = −Y , Var(X + Y ) = • E[X] =

– If X, Y indep., and Z = X − 3Y ,
Var(Z) = • Var(Xi) =

• Var(X) =

The hat problem Variance in the hat problem

• people throw their hats in a box and • Var( ) = [ 2 2n X E X ]− (E[X]) = E[ 2X ]− 1
then pick one at random.

– X: number of people who get their own
hat 2 =

∑ 2X Xi +
i i,j

∑
XiXj

:i=j
– Find E[X]

• E[ 2X ] =i

Xi =


1, if i selects own hat

0, otherwise.
P(X1X2 = 1) = P(X1 = 1)·P(X2 = 1 | X1 = 1)

• X = X1 + X2 + · · · + Xn =

• P(Xi = 1) =

• E[Xi] =

• Are the Xi independent? • E[ 2X ] =

• E[X] = • Var(X) =

#
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LECTURE 8 Continuous r.v.’s and pdf’s

• A continuous r.v. is described by a• Readings: Sections 3.1-3.3
probability density function fX

Lecture outline
f (x)X

S a m p l e  S p a c e

• Probability density functions

• Cumulative distribution functions
a b x Event {a < X < b }

• Normal random variables

P(a ≤ X ≤ b) =
∫ b

fX(x) dx
a

∫ ∞
fX(x) dx = 1

−∞

P(x ≤ X ≤ x + δ) =
∫ x+δ

fX(s) ds
x

≈ fX(x) · δ

P(X ∈ B) =
∫

fX(x) dx, for “nice” sets B
B

Means and variances Cumulative distribution function

• E[X] =
∫ ∞ (CDF)

xfX(x) dx
−∞

x
E[g(X)]

∫ ∞
• = g(x)fX(x) dx FX(x) = P(X ≤ x) =

∫
fX(t) dt−∞ −∞

∞
• var( ) = 2 =

∫
( [ ])2X σ x E X fX(x)X − dx

−∞ f (x CDFX  )

• Continuous Uniform r.v.

f  (x )X

a b x a b x 

• Also for discrete r.v.’s:

a b x FX(x) = P(X ≤ x) =
∑

pX(k)
k≤x

• fX(x) = a ≤ x ≤ b
3/6

2/6

• E[X] = 1/6

∫ b ( + )2 1 ( − )2a x 

• 2 a b b 4

σ = x
a

−
1 2 4 x 1 2

dx =X 2 b− a 12
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Mixed distributions Gaussian (normal) PDF

• Schematic drawing of a combination of 1 2
• Standard normal (0 1): ( ) = √ x /2N , fX x e−

a PDF and a PMF 2π
1/2

Normal CDF F (x)
Normal PDF f (x) X

x
1

0 .5

-1 0 1 2-1 0 1 2 x x  

E[X] = var(X) = 1
0 1/2 1

•
x  0

• General normal N( 2µ, σ ):

• The corresponding CDF: 1 −( − )2 2 2
fX( √ x µ / σx) = e

σ 2π
FX(x) = P(X ≤ x)

CDF

out that:
1

• It turns
E[ 2X] = µ and Var(X) = σ .

3/4

• Let Y = aX + b

1/4
– Then: E[Y ] = Var(Y ) =

– Fact: Y ( 2N aµ + 2b, a σ )
1/2 1 x 

∼

Calculating normal probabilities The constellation of concepts

• No closed form available for CDF

– but there are tables
(for standard normal) pX(x) fX(x)

F ( )X X x
• If X ∼ N( 2 µ

µ, σ ), then
−

∼ N( ) E[X], var(X)σ

• If X ∼ pN(2,16): X,Y (x, y) fX,Y (x, y)

pX Y (x | y) f
3 |Y (x

X − 2 X y)
P(X

− 2 | |
≤ 3) = P

(

4
≤

)
= CDF(0.25)

4

.00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319

1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767

2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817

Sec. 3.3 Normal Random Variables 155

2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936

2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986

3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998

The standard normal table. The entries in this table provide the numerical values

of Φ(y) = P(Y ≤ y), where Y is a standard normal random variable, for y between 0

and 3.49. For example, to find Φ(1.71), we look at the row corresponding to 1.7 and

the column corresponding to 0.01, so that Φ(1.71) = .9564. When y is negative, the

value of Φ(y) can be found using the formula Φ(y) = 1− Φ(−y).
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LECTURE 9 Continuous r.v.’s and pdf’s

• Readings: Sections 3.4-3.5
f (x)X

S a m p l e  S p a c e

Outline

• PDF review a b x Event {a < X < b }

• Multiple random variables

– conditioning
b

– independence P(a ≤ X ≤ b) = f
a

• Examples

�
X(x) dx

• P(x ≤ X ≤ x+ δ) ≈ fX(x) · δ
Summary of concepts

• E[g(X)] =
� ∞

g(x)fX(x) dx
pX(x) fX(x) −∞

F (x)
�

X

xpX(x) E[X]
x

�
xfX(x) dx

var(X)

pX,Y (x, y) fX,Y (x, y)

pX|A(x) fX A(x)|
pX Y (x y| | ) fX (x|Y | y)

Joint PDF fX,Y (x, y) Buffon’s needle

• Parallel lines at distance d
Needle of length � (assume � < d)
Find P(needle intersects one of the lines)

P((X,Y ) ∈ S) =
� �

fX,Y (x, y) dx dy
•

S q
x

l

•
d

Interpretation:

( ≤ ≤ + ≤ ≤ + ) ≈ ( )· 2P x X x δ, y Y y δ fX,Y x, y δ
• X ∈ [0, d/2]: distance of needle midpoint

to nearest line
• Expectations: • Model: X, Θ uniform, independent

( ) = 0 2 0[ ( )] =
� ∞ � ∞

( f x, θ x d/ , θ π/2E g X, Y g x, y)fX,Y (x, y) dx dy X,Θ ≤ ≤ ≤ ≤
−∞ −∞

�
• From the joint to the marginal: • Intersect if X ≤ sinΘ

2
fX(x) · δ ≈ P(x ≤ X ≤ x+ δ) =

P
�

�
X ≤ sinΘ

�
=

� �
fX(x)fΘ(θ) dx dθ

2 ≤ �x sin θ2

4 � π/2 � (�/2) sin θ
= dx dθ

πd 0 0

• X and Y are called independent if
4 π/2 � 2�

=
�

sin θfX,Y (x, y) = X( ) dθ =f x fY (y), for all x, y πd 0 2 πd

18



Conditioning

• Recall

P(x ≤ X ≤ x+ δ) ≈ fX(x) · δ

• By analogy, would like:

P(x ≤ X ≤ x+ δ | Y ≈ y) ≈ fX (|Y x | y) · δ

• This leads us to the definition:

fX,Y (x, y)
fX Y (x | y) = if fY (y) > 0| fY (y)

• For given y, conditional PDF is a
(normalized) “section” of the joint PDF

• If independent, fX,Y = fXfY , we obtain

fX Y (x|y) = fX(x)|

Area of slice = Height of marginal
density at x

Slice through
density surface

for fixed x

Renormalizing slices for
fixed x gives conditional

densities for Y given X = x

Joint, Marginal and Conditional Densities

Image by MIT OpenCourseWare, adapted from
Probability, by J. Pittman, 1999.

Stick-breaking example

• Break a stick of length � twice:
break at X: uniform in [0,1];
break again at Y , uniform in [0, X]

f (y | x)f (x)  Y   |X X  

xL    y 

fX,Y (x, y) = fX(x)fY (y x) =|X |

on the set:
 y 

L

L x 

E[Y | X = x] =
�

yfY (y | X ) dy =|X = x

1
fX,Y (x, y) = , 0 ≤ y ≤ x �

�x
≤

 y 

L

L x 

fY (y) =
�

fX,Y (x, y) dx

� 1
=

�
dx

y �x
1 �

= log , 0 ≤ y �
� y

≤

� � 1 � �
E[Y ] =

�
yfY (y) dy =

�
y log dy =

0 0 � y 4
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LECTURE 10 The Bayes variations

Continuous Bayes rule; pX,Y (x, y) pX(x)pY y x)
(x y) = =

|X(
p

|
Derived distributions X|Y |

pY (y) pY (y)

• Readings: pY (y) = pX(x)pY X(y | x)
x

|
Section 3.6; start Section 4.1

�

Example:

Review • X = 1,0: airplane present/not present

• Y = 1,0: something did/did not register

p ( on adaX(x) f r rX x)

pX,Y (x, y) fX,Y (x, y)
pX,Y (x, y) fX,Y (x, y) Continuous counterpart

pX (x y) = f (x y) =|Y |
pY (y) X|Y |

fY (y)
� � ∞ f (x, y) fX(x)f

p (x) = p (x, y) f (x) = f (x, y) dy | X,Y Y |X(y )
X X,Y X X, f (x =

y −∞ X|Y
| x

Y y) =
fY (y) fY (y)

fY (y) = fX(x)fY X(y x) dx
x

| |

FX(x) = P( )

�

X ≤ x
Example: X: some signal; “prior” fX(x)

E[X], var(X) Y : noisy version of X

fY X(y | x): model of the noise|

Discrete X, Continuous Y What is a derived distribution

• It is a PMF or PDF of a function of onepX(x)f (y x)
p Y (x | Y
X y) =

|X |
or more random variables with known| fY (y) probability law. E.g.:

) =
y 

fY (y
�

pX(x)fY |X(y | x) f (y,x)=1X,Y
x

1
Example:

• X: a discrete signal; “prior” pX(x)
• Y : noisy version of X
• fY X(y | x): continuous noise model|

1 x 

Continuous X, Discrete Y
– Obtaining the PDF for

fX(x)pY
f x X, Y ) =X Y/X|Y ( y) =

|X(y | x)
| g(

pY (y)
� involves deriving a distribution.

pY (y) = fX(x)pY X(y | x) dx Note: g(X,Y ) is a random variable
x

|

Example:
When not to find them

• X: a continuous signal; “prior” fX(x)
(e.g., intensity of light beam); • Don’t need PDF for g(X,Y ) if only want

• Y : discrete r.v. affected by X to compute expected value:
(e.g., photon count)

E[g(X,Y )] = g(x, y)f (x, y) dx dy• s t X,
X(y | x): model of the di cre e r. .

� �
YpY v|
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How to find them The continuous case

• Discrete case • Two-step procedure:

– Obtain probability mass for each
– Get CDF of Y : FY (y) = P(Y y)

possible value of Y = g(X)
≤

– Differentiate to getpY (y) = P(g(X) = y)

=
�

dFp YX(x) fY (y) = (y)
x: g(x)=y dy

x y

.
g(x)

.
Example

. . • X: uniform on [0,2]

. . • Find PDF of = 3Y X

. . • Solution:

. . 3FY (y) = P(Y ≤ y) = P(X ≤ y)

. . = 1 3 1 1 3P( /X ≤ y ) = /y
2

. . dF
fY ( Y 1

y) = (y) =
dy 6 2y /3

Example The pdf of Y=aX+b

• Joan is driving from Boston to New York.
Her speed is uniformly distributed be- Y = 2X +5:
tween 30 and 60 mph. What is the dis-
tribution of the duration of the trip? fX

faX faX+b

200
• Let T (V ) = .

V

• Find fT (t) - 2 - 1 2 3 4 9

f (v  )v 0

1/30 1 y b
fY (y) = f

|a| X

� −
a

�

30 60 v0 • Use this to check that if X is normal,
then Y = aX + b is also normal.
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LECTURE 11 A general formula

Derived distributions; convolution; • Let Y = g(X)

covariance and correlation g strictly monotonic.

d g

• Readings:
slope (x)

y dx 

Finish Section 4.1;
Section 4.2

g(x)
[y, y+?]

Example
y x

f (y,x)=1X,Y [x, x+d]

1

• Event x ≤ X ≤ x + δ is the same as
g(x) ≤ Y ≤ g(x + δ)
or (approximately)

1 x g(x) ≤ Y ≤ g(x) + δ|(dg/dx)(x)|

Find the PDF of Z = g(X, Y ) = Y/X
• Hence,

dg
δfX(x) = δfY (y)

(z z ≤ 1

∣∣∣ (x)
F ) = dx

Z
∣

∣∣∣

where y = g(x)

∣

FZ(z) = z ≥ 1

The distribution of X + Y The continuous case

• W = X + Y ; X, Y independent • W = X + Y ; X, Y independent

. y 
y

.
 

(0,3)

.(1,2) w 

.(2,1)

.(3,0)

.
x 

w x  

pW (w) = P(X + Y = w)
∑ x + y = w

= P(X = x)P(Y = w − x)

=
∑x

p (x)p (w − x) • fW X(w | x) = fY (w − x)X Y
x

|

• fW,X(w, x) = fX(x)f
• Mechanics: W |X(w | x)

= fX(x)fY (w x)
– Put the pmf’s on top of each other

−

– Flip the pmf of Y f (w) =
∫ ∞

• W fX(x)fY (w − x) dx

– Shift the flipped pmf by w
−∞

(to the right if w > 0)

– Cross-multiply and add
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Two independent normal r.v.s The sum of independent normal r.v.’s

• X ∼ N( 2µx, σx),
2Y ∼ N( 2µy, σy), • X ∼ N(0, σx),

2Y ∼ N(0, σy),
independent independent

fX,Y (x, y) = fX(x)fY (y) Let
1

{ W = X + Y
( − )2 ( − )2

•
x µ

= exp − x y µy
2 − 2

}

fW (w) =
∫ ∞

fX(x)fY (w − x) dx2πσxσy 2σx 2σy −∞
1 − 2x /2 2

=
∞ 2 2σ −x)x −(w /2σe e y dx

• PDF is constant on the ellipse where 2πσxσy
2

∫

−∞

(x− 2µx) ( (algebra) = cey
+

2σ2
− µy)2

−γw

x 2σ2
y

Conclusion:is constant • W is normal

– mean=0, variance= 2σx + 2σy• Ellipse is a circle when σx = σy
– same argument for nonzero mean case

Covariance Correlation coefficient

• cov(X, Y ) = E
[
(X − E[X]) · (Y − E[Y ])

]
• Dimensionless version of covariance:

[
(X E[X]) (Y E[Y ])• Zero-mean case: cov(X, Y ) = E [XY ] ρ = E
− −
σX

·
σY

]

x . cov(
x 

X, Y )

. =
.

.. . .

σXσY
..

.

.

.

. .. .

.

. . .

.

. . .

. .

. . . . .
. . . .. .

. ..

. . .

..

. . . .

.

.

.. 1 ρ 1. . .. . .. . . . . . .

. . .

.

. .. . . .

.. .

. .

.

.

..

. . .

. .

• −
.

.. .

≤
.. . . .

. .

. .

.

≤

.

.

.

. . . .

.

. . .

.. ..

. . . y ... ... . y . .. . . ... . • |ρ = 1 (X E[X]) = c(Y E[Y ])
.. .

. . .

.

. ... . .

| ⇔ − −

. .. .. ..

(linearly related)

. . .. .

. .

. • Independent ⇒ ρ = 0

• cov(X, Y ) = E[XY ]− E[X]E[Y ] (converse is not true)


n

• var


n

 X )
i

∑
i

=1

 = var(Xi) + 2 cov(Xi, Xj
i

∑

=1 (i,j

∑

):i=j

• independent ⇒ cov(X, Y ) = 0
(converse is not true)

&
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LECTURE 12 Conditional expectations

• Readings: Section 4.3; • Given the value y of a r.v. Y :

parts of Section 4.5 E[X | Y = y] = xp
no

∑
X|Y (x y)

(mean and variance only; transforms) x
|

(integral in continuous case)

Lecture outline • Stick example: stick of length !

break at uniformly chosen point Y
• Conditional expectation break again at uniformly chosen point X

– Law of iterated expectations y
• E[X | Y = y] = (number)

2
– Law of total variance

• Sum of a random number Y
of independent r.v.’s E[X | Y ] = (r.v.)

2

– mean, variance

• Law of iterated expectations:

E[E[X | Y ]] =
∑

E[X | Y = y]pY (y)= E[X]
y

• In stick example:
E[X] = E[E[X | Y ]] = E[Y/2] = !/4

var(X | Y ) and its expectation Section means and variances

Two sections:
• var(X | Y = ) = E

[
( 2y X − E[X | Y = y]) | Y = y

]

y = 1 (10 students); y = 2 (20 students)
• var(X | Y ): a r.v.

1
with

10

∑10 1 30
value var(X | Y = y) when Y = y y = 1 : xi = 90 y = 2 : xi = 60

20i=1 i=11
• Law of total variance:

∑

var(X) = E[var(X | Y )] + var(E[X | Y ])
1 30 +

E[X] = =
30 i

∑ 90 10 60
x

· 20
i

·
= 70

30=1

Proof: E[X | Y = 1] = 90, E[X | Y = 2] = 60

(a) Recall: var(X) = E[ 2X ]− (E[X])2
90, w.p. 1/3

E[X Y ] =
2 2

|




60, w.p. 2/3
(b) var(X | Y ) = E[X | Y ]− (E[X | Y ])

[ [ | ]] = 1 · 90 + 2E E X Y · 60 = 70 = E[X]3 3

(c) E[var(X | Y )] = E[ 2X ]−E[ (E[X | Y ])2 ]

(d) var(E[X | Y ]) = E[X | Y ])2
1 2

E[ ( ]−(E[X])2 var(E[X | Y ]) = (90− 70)2 + (60− 70)2
3 3
600

= = 200Sum of right-hand sides of (c), (d): 3
[ 2]− ])2E X (E[X = var(X)
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Section means and variances (ctd.) Example

1 ∑10 2 1 ∑30 2 var(X) = E[var(X | Y )] + var(E[X ])− Y(xi 90) = 10 (xi−60) = 20 |
10 20i=1 i=11

f (x)X

2/3

var(X | Y = 1) = 10 var(X | Y = 2) = 20
1/3

 1 2 x


Y=1 Y=2  

10, w.p. 1/3
var(X | Y ) = 20, w.p. 2/3

E[X | Y = 1] = E[X | Y = 2] =
[var(X | = 20 = 50Y )] 1 10 + 2E 3 · 3 · 3

var(X | Y = 1) = var(X | Y = 2) =

var(X) = E[var(X | Y )] + var(E[X | Y ])
E[X] =

50
= + 200

3
= (average variability within sections) var(E[X | Y ]) =

+(variability between sections)

Sum of a random number of Variance of sum of a random number
independent r.v.’s of independent r.v.’s

• N : number of stores visited • var(Y ) = E[var(Y | N)] + var(E[Y
(N is a nonnegative integer r.v.)

| N ])

E[Y N ] = N E[X]
• Xi: money spent in store i

• |
var(E[Y | N ]) = (E[X])2 var(N)

– Xi assumed i.i.d.
var(Y N = n) = n var(X)

– independent of N
• |

var(Y | N) = N var(X)

• Let Y = X1 + · · · + X E[var(Y | N)] = E[N ] var(X)N

E[Y | N = n] = E[X1 + X2 + · · · + Xn | N = n]

= E[X1 + X2 + · · · + Xn]

= E[X ] + E[X ] + · · · + E[X ] var(Y ) = E[var(Y | N)] + var(E[Y1 2 | N ])n

= nE[X] = [ ] var( ) + ( 2E N X E[X]) var(N)

• E[Y | N ] = N E[X]

E[Y ] = E[E[Y | N ]]

= E[N E[X]]

= E[N ]E[X]
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LECTURE 13 The Bernoulli process

A sequence of independentThe Bernoulli process •
Bernoulli trials

• Readings: Section 6.1
• At each trial, i:

– P(success) = P(Xi = 1) = p
Lecture outline

– P(failure) = P(Xi = 0) = 1− p

• Definition of Bernoulli process

Examples:• Random processes •

– Sequence of lottery wins/losses
• Basic properties of Bernoulli process

– Sequence of ups and downs of the Dow

• Distribution of interarrival times Jones

– Arrivals (each second) to a bank• The time of the kth success

– Arrivals (at each time slot) to server
• Merging and splitting

Random processes Number of successes S in n time slots

• First view: • P(S = k) =
sequence of random variables X1, X2, . . .

• E[Xt] = • E[S] =

• Var(Xt) =

• Var(S) =

• Second view:
what is the right sample space?

• P(Xt = 1 for all t) =

• Random processes we will study:

– Bernoulli process
(memoryless, discrete time)

– Poisson process
(memoryless, continuous time)

– Markov chains
(with memory/dependence across time)
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Interarrival times Time of the kth arrival

• T1: number of trials until first success • Given that first arrival was at time t

i.e., T1 = t:
– P(T1 = t) = additional time, T2, until next arrival

– Memoryless property – has the same (geometric) distribution

– independent of T1– E[T1] =

– Var(T1) = • Yk: number of trials to kth success

– E[Y• If you buy a lottery ticket every day, what k] =

is the distribution of the length of the
first string of losing days? – Var(Yk) =

– P(Yk = t) =

Splitting of a Bernoulli Process Merging of Indep. Bernoulli Processes

(using independent coin flips)
Bernoulli (p)

time

time Merged process:

Bernoulli (p q pqq + − ) time

Original

process
time

Bernoulli (q)
1 − q time

time

yields a Bernoulli process

yields Bernoulli processes (collisions are counted as one arrival)

Sec. 6.1 The Bernoulli Process 305

Splitting and Merging of Bernoulli Processes

Starting with a Bernoulli process in which there is a probability p of an arrival
at each time, consider splitting it as follows. Whenever there is an arrival, we
choose to either keep it (with probability q), or to discard it (with probability
1−q); see Fig. 6.3. Assume that the decisions to keep or discard are independent
for different arrivals. If we focus on the process of arrivals that are kept, we see
that it is a Bernoulli process: in each time slot, there is a probability pq of a
kept arrival, independent of what happens in other slots. For the same reason,
the process of discarded arrivals is also a Bernoulli process, with a probability
of a discarded arrival at each time slot equal to p(1− q).

Figure 6.3: Splitting of a Bernoulli process.

In a reverse situation, we start with two independent Bernoulli processes
(with parameters p and q, respectively) and merge them into a single process,
as follows. An arrival is recorded in the merged process if and only if there
is an arrival in at least one of the two original processes. This happens with
probability p+ q − pq [one minus the probability (1− p)(1− q) of no arrival in
either process]. Since different time slots in either of the original processes are
independent, different slots in the merged process are also independent. Thus,
the merged process is Bernoulli, with success probability p+ q− pq at each time
step; see Fig. 6.4.

Splitting and merging of Bernoulli (or other) arrival processes arises in
many contexts. For example, a two-machine work center may see a stream of
arriving parts to be processed and split them by sending each part to a randomly
chosen machine. Conversely, a machine may be faced with arrivals of different
types that can be merged into a single arrival stream.

The Poisson Approximation to the Binomial

The number of successes in n independent Bernoulli trials is a binomial random
variable with parameters n and p, and its mean is np. In this subsection, we

306 The Bernoulli and Poisson Processes Chap. 6

Figure 6.4: Merging of independent Bernoulli processes.

concentrate on the special case where n is large but p is small, so that the mean

np has a moderate value. A situation of this type arises when one passes from

discrete to continuous time, a theme to be picked up in the next section. For

some examples, think of the number of airplane accidents on any given day:

there is a large number n of trials (airplane flights), but each one has a very

small probability p of being involved in an accident. Or think of counting the

number of typos in a book: there is a large number of words, but a very small

probability of misspelling any single one.

Mathematically, we can address situations of this kind, by letting n grow

while simultaneously decreasing p, in a manner that keeps the product np at a

constant value λ. In the limit, it turns out that the formula for the binomial PMF

simplifies to the Poisson PMF. A precise statement is provided next, together

with a reminder of some of the properties of the Poisson PMF that were derived

in Chapter 2.

Poisson Approximation to the Binomial

• A Poisson random variable Z with parameter λ takes nonnegative

integer values and is described by the PMF

pZ(k) = e−λ
λk

k!
, k = 0, 1, 2, . . . .

Its mean and variance are given by

E[Z] = λ, var(Z) = λ.
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LECTURE 14 Bernoulli review

Discrete time; success probability p
The Poisson process

•

Number of arrivals in m ot• n ti e sl s:
Readings: Start Section 6.2.

•
binomial pmf

• Interarrival times: geometric pmf
Lecture outline

Time to ar : Pascal p f• k rivals m
Review of Bernoulli process

•

Memorylessness• Definition of Poisson process
•

• Distribution of number of arrivals

• Distribution of interarrival times

• Other properties of the Poisson process

Definition of the Poisson process PMF of Number of Arrivals N

t t t t t t !
1 3 ! 1 2 32

x x x x x x x x x x x x x x x x x x x x x x

0 0
Time Time

• Time homogeneity:
Finely discretize [0, t]: approximately Bernoulli

P (k, τ) = Prob. of k arrivals in interval
•

of duration τ

Nt (of discrete approximation): binomial

• Numbers of arrivals in disjoint time

•

intervals are independent

• Taking δ → 0 (or n → ∞) gives:

• Small interval probabilities:
(λτ)ke−λτ

For VERY small δ: P (k, τ) = , k = 0,1, . . .

1

δ

 k!
if

) ≈
 − λδ, k = 0;

P (k, λδ, if k = 1; • E[Nt] = λt, var(


N t

0 if k > 1.

– λ: r ival r te


t) = λ

 ,

“a r a ”

  

LECTURE 16

The Poisson process

• Readings: Start Section 5.2.

Lecture outline

• Review of Bernoulli process

• Definition of Poisson process

• Distribution of number of arrivals

• Distribution of interarrival times

• Other properties of the Poisson process

  

Bernoulli review

• Discrete time; success probability p

• Number of arrivals in n time slots:
binomial pmf

• Interarrival time pmf: geometric pmf

• Time to k arrivals: Pascal pmf

• Memorylessness

       

Definition of the Poisson process

• P (k, τ) = Prob. of k arrivals in interval
of duration τ

• Assumptions:

– Numbers of arrivals in disjoint time in-
tervals are independent

– For VERY small δ:

P (k, δ) ≈






1 − λδ if k = 0
λδ if k = 1
0 if k > 1

– λ = “arrival rate”

    

PMF of Number of Arrivals N

P (k, τ) =
(λτ)ke−λτ

k!
, k = 0,1, . . .

• E[N ] = λτ

• σ2
N = λτ

• MN(s) = eλt(e
s−1)

Example: You get email according to a
Poisson process at a rate of λ = 0.4 mes-
sages per hour. You check your email every
thirty minutes.

– Prob(no new messages)=

– Prob(one new message)=

  

LECTURE 16

The Poisson process

• Readings: Start Section 5.2.

Lecture outline

• Review of Bernoulli process

• Definition of Poisson process

• Distribution of number of arrivals

• Distribution of interarrival times

• Other properties of the Poisson process

  

Bernoulli review

• Discrete time; success probability p

• Number of arrivals in n time slots:
binomial pmf

• Interarrival time pmf: geometric pmf

• Time to k arrivals: Pascal pmf

• Memorylessness

       

Definition of the Poisson process

• P (k, τ) = Prob. of k arrivals in interval
of duration τ

• Assumptions:

– Numbers of arrivals in disjoint time in-
tervals are independent

– For VERY small δ:

P (k, δ) ≈






1 − λδ if k = 0
λδ if k = 1
0 if k > 1

– λ = “arrival rate”

    

PMF of Number of Arrivals N

P (k, τ) =
(λτ)ke−λτ

k!
, k = 0,1, . . .

• E[N ] = λτ

• σ2
N = λτ

• MN(s) = eλt(e
s−1)

Example: You get email according to a
Poisson process at a rate of λ = 0.4 mes-
sages per hour. You check your email every
thirty minutes.

– Prob(no new messages)=

– Prob(one new message)=
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Example Interarrival Times

• You get email according to a Poisson • Yk time of kth arrival

process at a rate of λ = 5 messages per

• Erlang distribution:hour. You check your email every thirty

minutes. λk 1yk− e−λy
fY (y) = , y 0

k (k − 1)!
≥

• Prob(no new messages) =

• Prob(one new message) =

• Time of first arrival (k = 1):

exponential: fY (y) = λe−λy, y
1

≥ 0

– Memoryless property: The time to the

next arrival is independent of the past

Bernoulli/Poisson Relation Merging Poisson Processes

Sum of independent Poisson random

! ! ! ! ! ! ! !

•

n = t /! variables is Poisson

x x x np  ="t
0 =Time p "!

Arrivals • Merging of independent Poisson processes

is Poisson

Red bulb flashes

 (Poisson)
POISSON BERNOULLI

All  flashes
"

Times of Arrival Continuous Discrete 1  (Poisson)

Arrival Rate /uni ime p/per trial
"λ t t 2

Green bulb flashes
PMF of # of Arrivals Poisson Binomial

 (Poisson)

Interarrival Time Distr. Exponential Geometric

– What is the probability that the next

Time to k-th arrival Erlang Pascal arrival comes from the first process?

     

Interarrival Times

• Yk time of kth arrival

• Erlang distribution:

fYk(y) =
λkyk−1e−λy

(k − 1)!
, y ≥ 0

k=1

k=2

k=3

y

f
Y 
(y)
k

• First-order interarrival times (k = 1):
exponential
fY1

(y) = λe−λy, y ≥ 0

– Memoryless property: The time to the
next arrival is independent of the past

       

Bernoulli/Poisson Relation

POISSON BERNOULLI

Times of Arrival Continuous Discrete

Arrival Rate λ/unit time p/per trial

PMF of # of Arrivals Poisson Binomial

Interarrival Time Distr. Exponential Geometric

Time to k-th arrival Erlang Pascal

     

Adding Poisson Processes

• Sum of independent Poisson random vari-

ables is Poisson

• Sum of independent Poisson processes

is Poisson

All  flashes

 (Poisson)

Red bulb flashes

 (Poisson)

"1

"2

Green bulb flashes

 (Poisson)

– What is the probability that the next
arrival comes from the first process?

     

Interarrival Times

• Yk time of kth arrival

• Erlang distribution:

fYk(y) =
λkyk−1e−λy

(k − 1)!
, y ≥ 0

k=1

k=2

k=3

y

f
Y 
(y)
k

• First-order interarrival times (k = 1):
exponential
fY1

(y) = λe−λy, y ≥ 0

– Memoryless property: The time to the
next arrival is independent of the past

       

Bernoulli/Poisson Relation

Time0

x x x

!

Arrivals
p ="!

! !! ! ! ! !
n = t /!

np  ="t

POISSON BERNOULLI

Times of Arrival Continuous Discrete

Arrival Rate λ/unit time p/per trial

PMF of # of Arrivals Poisson Binomial

Interarrival Time Distr. Exponential Geometric

Time to k-th arrival Erlang Pascal

     

Adding Poisson Processes

• Sum of independent Poisson random vari-

ables is Poisson

• Sum of independent Poisson processes

is Poisson

– What is the probability that the next
arrival comes from the first process?

flr (l) 

l
0 

r = 1 
r = 2 
r = 3 

Image by MIT OpenCourseWare. 
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LECTURE 15 Review

Defining characteristics
Poisson process — II

•
– Time homogeneity: P (k, τ)

• Readings: Finish Section 6.2. – Independence

– Small interval probabilities (small δ):

• Review of Poisson process

1− λδ, if k = 0,

P (k, δ) ≈ λδ, if k = 1,
• Merging and splitting




0, if k > 1.

• Examples • Nτ is a Poisson



r.v., with parameter λτ :

(λτ)ke−λτ
• Random incidence P (k, τ) = , k = 0,1, . . .

k!

E[Nτ ] = var(Nτ) = λτ

• Interarrival times (k = 1): exponential:

fT (t) = λe
1

−λt, t ≥ 0, E[T1] = 1/λ

• Time Yk to kth arrival: Erlang(k):

λkyk−1e−λy
fY (y) = , y

k (k 1)!
≥ 0

−

Poisson fishing Merging Poisson Processes (again)

• Assume: Poisson, λ = 0.6/hour. • Merging of independent Poisson processes

is Poisson
– Fish for two hours.

Red bulb flashes

– if no catch, continue until first catch.  (Poisson)

All  flashes

a) P(fish for more than two hours)= "1  (Poisson)

"2

b) P(fish for more than two and less than
five hours)= Green bulb flashes

 (Poisson)

c) P(catch at least two fish)= – What is the probability that the next
arrival comes from the first process?

d) E[number of fish]=

e) E[future fishing time | fished for four hours]=

f) E[total fishing time]=

     

Interarrival Times

• Yk time of kth arrival

• Erlang distribution:

fYk(y) =
λkyk−1e−λy

(k − 1)!
, y ≥ 0

k=1

k=2

k=3

y

f
Y 
(y)
k

• First-order interarrival times (k = 1):
exponential
fY1

(y) = λe−λy, y ≥ 0

– Memoryless property: The time to the
next arrival is independent of the past

       

Bernoulli/Poisson Relation

Time0

x x x

!

Arrivals
p ="!

! !! ! ! ! !
n = t /!

np  ="t

POISSON BERNOULLI

Times of Arrival Continuous Discrete

Arrival Rate λ/unit time p/per trial

PMF of # of Arrivals Poisson Binomial

Interarrival Time Distr. Exponential Geometric

Time to k-th arrival Erlang Pascal

     

Adding Poisson Processes

• Sum of independent Poisson random vari-

ables is Poisson

• Sum of independent Poisson processes

is Poisson

– What is the probability that the next
arrival comes from the first process?
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Light bulb example Splitting of Poisson processes

• Each light bulb has independent, • Assume that email traffic through a server
exponential(λ) lifetime is a Poisson process.

Destinations of different messages are
• Install three light bulbs. independent.

Find expected time until last light bulb
dies out.

USA

Email Traffic

leaving  MIT p !
MIT

Server
! (1 - p)!

Foreign

• Each output stream is Poisson.

Random incidence for Poisson Random incidence in

“renewal processes”
• Poisson process that has been running

forever • Series of successive arrivals

– i.i.d. interarrival times• Show up at some “random time”
(but not necessarily exponential)(really means “arbitrary time”)

• Example:

Bus interarrival times are equally likely to
x x x x x

Time be 5 or 10 minutes

Chosen 

time instant • If you arrive at a “random time”:

– what is the probability that you selected
a 5 minute interarrival interval?

– what is the expected time
• What is the distribution of the length of to next arrival?

the chosen interarrival interval?

     

Splitting of Poisson processes

• Each message is routed along the first
stream with probability p

– Routings of different messages are in-
dependent

• Each output stream is Poisson

   

Random incidence for Poisson

• Poisson process that has been running
forever

• Show up at some “random time”
(“random incidence”)

x x
Time

Chosen 

time instant

x xx

• What is the distribution of the length of
the chosen interarrival interval?

  

Renewal processes

• Series of successive arrivals

– i.i.d. interarrival times
(but not necessarily exponential)

• Example:

Bus interarrival times are equally likely to
be 5 or 10 minutes

• If you arrive at a “random time”:

– what is the probability that you selected
a 5 minute interarrival interval?

– what is the expected time to next ar-
rival?
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LECTURE 16 Checkout counter model

• Discrete time n = 0,1, . . .Markov Processes – I

Customer arrivals: Bernoulli( )• pReadings: Sections 7.1–7.2 •

– geometric interarrival times

Customer service times: geometric(q)
Lecture outline

•

• Checkout counter example • “State” Xn: number of customers at
time n

• Markov process definition

• n-step transition probabilities

• Classification of states

20 1 3 .. . 9 10

Finite state Markov chains n-step transition probabilities

State occupancy probabilities,• Xn: state after n transitions
•

given initial state i:
– belongs to a finite set, e.g., {1, . . . , m}

r (n) = P(X = j X = i)– X0 is either given or random ij n | 0

• Markov property/assumption: Time 0 Time  n-1 Time  n

(given current state, the past does not
matter)

1
r (n-1) pi1 1j

..
.

pij = P(Xn+1 = j | Xn = i)
i k

= P(Xn+1 = j | X (n-1)n = i, X r 
n−1, . . . , X0) ik pkj j

..
.

r (n-1) pim mj

• Model specification: m

– identify the possible states – Key recursion:

the possible transitions m– identify
rij(n) =

∑
rik(n

– identify the transition probabilities k=1
− 1)pkj

– With random initial state:
m

P(Xn = j) =
i

∑
P(X0 = i)rij(n)

=1
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Example Generic convergence questions:

• Does rij(n) converge to something?

0 .5 0 .8

0 .5 0 .5 0 .5

1 2 3

21 1 1

0.2
n odd: r2 2(n)= n even: r2 2(n)=

n = 0 n = 1 n = 2 n = 100 n = 101 Does the limit depend on initial
r11(n)

• state?

r12(n) 0 .4

r21(n) 3 41 2
0 .3 0 .3

r22(n)
r (n)=11

r (n)=31

r (n)=21

Recurrent and transient states

• State i is recurrent if:
starting from i,
and from wherever you can go,
there is a way of returning to i

• If not recurrent, called transient

3 4

6 7
5

1 2

8

– i transient:
P(Xn = i)→ 0,
i visited finite number of times

• Recurrent class:
collection of recurrent states that
“communicate” with each other
and with no other state
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LECTURE 17 Review

Markov Processes – II • Discrete state, discrete time, time-homogeneous

• Readings: Section 7.3 – Transition probabilities pij

– Markov property

Lecture outline • rij(n) = P(Xn = j | X0 = i)

• Review

• Key recursion:
• Steady-State behavior

rij(n) =

– Steady-state convergence theorem

∑
rik(n

k

− 1)pkj

– Balance equations

• Birth-death processes

Warmup Periodic states

9 3 4 • The states in a recurrent class are
6 7 periodic if they can be grouped into

1 groups so that
5 1 2

d > all transitions from
8 one group lead to the next group

P(X1 = 2, X2 = 6, X3 = 7 | X0 = 1) =

P(X4 = 7 | X0 = 2) =

Recurrent and transient states

• State i is recurrent if: 9

starting from i, 5

and from wherever you can go,
4

there is a way of returning to i 86

•
3

If not recurrent, called transient

• Recurrent class: 72 1

collection of recurrent states that
“communicate” to each other
and to no other state
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Steady-State Probabilities Visit frequency interpretation

• Do the rij(n) converge to some πj?
(independent of the initial state i)

πj = πkpkj

• Yes, if:

∑

k

– recurrent states are all in a single class,
and • (Long run) frequency of being in j: πj

– single recurrent class is not periodic
• Frequency of transitions k → j: πkpkj

• Assuming “yes,” start from key recursion
Frequency of transitions into j:

rij(n) = rik(n− 1)pkj

•

k

∑
∑ πkpkj

k

1 πjpjj 
– take the limit as n→∞ π1p1j 

πj =
∑

πkpkj, for all j
k 2

π2p2j j
– Additional equation:

.  .
  .

.  .
  .

∑
πj = 1

j πmpmj m

Example Birth-death processes

1- p - q1- p 1 1 1- q0 m

0 .5 0 .8
p p0 1

0 1 2 3 .. . m

0 .5
q1 q q

2 m

21 pi

i+1
0.2 i πipi = πi+1qi+1

qi+1

• Special case: pi = p and qi = q for all i

ρ = p/q =load factor

p
πi+1 = πi = πiρ

q

πi = iπ0ρ , i = 0,1, . . . , m

• Assume p < q and m ≈ ∞

π0 = 1− ρ

ρ
E[Xn] = (in steady-state)

1− ρ

358 Markov Chains Chap. 7

be viewed as the long-term expected fraction of transitions that move the state
from j to k.†

Expected Frequency of a Particular Transition

Consider n transitions of a Markov chain with a single class which is aperi-
odic, starting from a given initial state. Let qjk(n) be the expected number
of such transitions that take the state from j to k. Then, regardless of the
initial state, we have

lim
n→∞

qjk(n)
n

= πjpjk.

Given the frequency interpretation of πj and πkpkj , the balance equation

πj =
m∑

k=1

πkpkj

has an intuitive meaning. It expresses the fact that the expected frequency πj

of visits to j is equal to the sum of the expected frequencies πkpkj of transitions
that lead to j; see Fig. 7.13.

Figure 7.13: Interpretation of the balance equations in terms of frequencies. In
a very large number of transitions, we expect a fraction πkpkj that bring the state
from k to j. (This also applies to transitions from j to itself, which occur with
frequency πjpjj .) The sum of the expected frequencies of such transitions is the
expected frequency πj of being at state j.

† In fact, some stronger statements are also true, such as the following. Whenever
we carry out a probabilistic experiment and generate a trajectory of the Markov chain
over an infinite time horizon, the observed long-term frequency with which state j is
visited will be exactly equal to πj , and the observed long-term frequency of transitions
from j to k will be exactly equal to πjpjk. Even though the trajectory is random, these
equalities hold with essential certainty, that is, with probability 1.
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LECTURE 18 Review

Assume a single class of recurrentMarkov Processes – III • states,
aperiodic;
plus transient states. Then,

lim r (nReadings: Section 7.4 ij ) = πjn→∞
where πj does not depend on the initial
conditions:

Lecture outline lim P(Xn = j | X0 = i) = πjn→∞

• Review of steady-state behavior

π1, . . . , πm can be found as the unique
• Probability of blocked phone calls

•
solution to the balance equations

• Calculating absorption probabilities πj =

• Calculating expected time to absorption

∑
πkpkj, j = 1, . . . , m,

k

together with
∑

πj = 1
j

Example The phone company problem

0 .5 0 .8 • Calls originate as a Poisson process,
rate λ

0 .5

– Each call duration is exponentially
21 distributed (parameter µ)

0.2
– B lines available

π1 = 2/7, π2 = 5/7 • Discrete time intervals
of (small) length δ

• Assume process starts at state 1.

"#

• P(X1 = 1, and X100 = 1)= 0 1 i!1 i B-1 B

iµ#

• P(X100 = 1 and X101 = 2) • Balance equations: λπi−1 = iµπi

λi B λi
• πi = π0 π0 = 1/

µii! i

∑

µii!=0

  

LECTURE 20

Markov Processes – III

Readings: Section 6.4

Lecture outline

• Review of steady-state behavior

• Probability of blocked phone calls

• Calculating absorption probabilities

• Calculating expected time to absorption

     

Review

• Assume a single class of recurrent states,
aperiodic. Then,

lim
n→∞ rij(n) = πj

where πj does not depend on the initial
conditions

lim
n→∞P(Xn = j | X0) = πj

• π1, . . . ,πm can be found as the unique
solution of the balance equations

πj =
∑

k

πkpkj

together with
∑

j

πj = 1

     

Example

21

0.5

0.5 0.8

0.2

π1 = 2/7, π2 = 5/7

• Assume process starts at state 1.

• P(X1 = 1, and X100 = 1)=

• P(X100 = 1 and X101 = 2)

       

The phone company problem

• Calls originate as a Poisson process,
rate λ

– Each call duration is exponentially
distributed (parameter µ)

– B lines available

• Discrete time intervals
of (small) length δ

• Balance equations: λπi−1 = iµπi

• πi = π0
λi

µii!
π0 = 1/

B∑

i=0

λi

µii!
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Calculating absorption probabilities Expected time to absorption

• What is the probability ai that:
process eventually settles in state 4,

1

given that the initial state is i? 3 0 .5

440 .5
0 .4

1 54

0.6
0 .2

0 .2 1 2
1

3 0 .3 0 .8

440 .5
0 .4

• Find expected number of transitions µ
0.6

i,
0 .2 until reaching the absorbing state,

1 2

given that the initial state is i?
0 .8

For i = 4, ai =
For i = 5, a = µi = 0 for i =i

∑ For all other i: µ
= for all other i = 1 + pijµjai pijaj, i

j

∑

j

– unique solution
– unique solution

Mean first passage and recurrence

times

• Chain with one recurrent class;
fix s recurrent

• Mean first passage time from i to s:

ti = E[min{n ≥ 0 such that Xn = s} |X0 = i]

• t1, t2, . . . , tm are the unique solution to

ts = 0,

ti = 1 +
∑

pij tj, for all i = s
j

• Mean recurrence time of s:

t∗s = E[min{n ≥ 1 such that Xn = s} |X0 = s]

• t∗s = 1 +
∑

j psj tj

%
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LECTURE 19 Chebyshev’s inequality

Limit theorems – I
• Random variable X

• Readings: Sections 5.1-5.3; (with finite mean µ and variance 2σ )
start Section 5.4 2σ =

∫
( − )2x µ fX(x) dx

c
• 2 2X1, . . . , Xn i.i.d. ≥

∫ −
(x− µ) fX(x) dx +

∫ ∞
(x− µ) fX(x) dx

c
X1 + · · · +

−∞
Xn

Mn =
n

What happens as ?
≥ 2c · P(|X − µ| ≥ c)

n→∞

• Why bother? 2σ
P(|X − µ| ≥ c) ≤

c2
• A tool: Chebyshev’s inequality

• Convergence “in probability”
1

P( X σ
Convergence of

| − µ| ≥ k ) ≤
k2

• Mn

(weak law of large numbers)

Deterministic limits Convergence “in probability”

• Sequence an • Sequence of random variables Yn

Number a
• converges in probability to a number a:

“(almost all) of the PMF/PDF of Yn ,
• an converges to a eventually gets concentrated

(arbitrarily) close to a”lim an = a
n→∞

“an eventually gets and stays
(arbitrarily) close to a” • For every ε > 0,

lim P(|Yn − a| ≥ ε) = 0
n→∞

• For every ε > 0,
there exists n0,
such that for every n ≥ n0,
we have |an − a| ≤ ε. 1 -  1 /n pmf of Yn

1 /n 

0 n 

Does Yn converge?
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Convergence of the sample mean The pollster’s problem

(Weak law of large numbers)
• f : fraction of population that “. . . ”

• X1, X2, . . . i.i.d.
2 • ith (randomly selected) person polled:

finite mean µ and variance σ

X1 + · · · + 1 if yes,X ,n
i =M = Xn




0, if no.n

• Mn = (X



1 + · · · + Xn)/n
• E[Mn] = fraction of “yes” in our sample

• Goal: 95% confidence of ≤1% error

• Var(Mn) = P(|Mn − f | ≥ .01) ≤ .05

Use Chebyshev’s

Var( 2

• inequality:

M σ
(| n) 2σP Mn − µ| ≥ ε) ≤ = 2 P(|Mn − f | ≥ M

2 .01)ε nε ≤ n

(0.01)2
2σ 1• Mn converges in probability to µ = x

n(0.01)2
≤

4n(0.01)2

• If n = 50,000,
then P(|Mn − f | ≥ .01) ≤ .05
(conservative)

Different scalings of Mn The central limit theorem

• X1, . . . , Xn i.i.d. “Standa n = X1 +
2

• rdized” S · · · + Xn:
finite variance σ Sn E[Sn] Sn

Zn =
− nE[X]

=
−

σ
√

n σ• Look at three variants of their sum: Sn

– zero mean
• Sn = + + Xn variance 2X1 · · · nσ

– unit variance

S
• n Let be a standard normal r.v.Mn = variance 2σ /n

n
• Z

(zero mean, unit variance)
converges “in probability” to E[X] (WLLN)

Sn every c:
• √ constant variance 2σ

• Theorem: For

n
P(Zn ≤ c)→ P(Z ≤ c)

– Asymptotic shape?

• P(Z ≤ c) is the standard normal CDF,
Φ(c), available from the normal tables
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LECTURE 20 Usefulness

THE CENTRAL LIMIT THEOREM • universal; only means, variances matter

• accurate computational shortcut• Readings: Section 5.4
• justification of normal models

• , Xn i.i.d., finite variance 2X1, . . . σ

• “Standardized” Sn = X1 + · · · + Xn:
What exactly does it say?

Sn E[Sn] Sn nE[X]
Zn =

−
=

−
√ • CDF of Zn converges to normal CDF

σSn nσ
– not a statement about convergence of

– E[Zn] = 0, var(Z ) = 1 PDFs or PMFsn

• Let Z be a standard normal r.v.
(zero mean, unit variance) Normal approximation

• • Treat Zn as if normalTheorem: For every c:
– also treat Sn as if normal

P(Zn ≤ c)→ P(Z ≤ c)

• P(Z ≤ c) is the standard normal CDF,
Φ(c), available from the normal tables

Can we use it when n is “moderate”?

• Yes, but no nice theorems to this effect

• Symmetry helps a lot

0.14 0.1

n =4

0.12

0.08

0.1

0.06
0.08

0.06
0.04

The pollster’s problem using the CLT
0.04

0.02

0.02 f : fraction of population that “ . . .��
0 0

0 5 10 15 20 0 5 10 15 20 25 30 35

•

ith (randomly selected) person polled:
0.25 0.035

n =32

•
0.03

0.2 1
0.025




, if yes,
X =

0.15

i
0.02 0, if no.

0.015
0.1

0.01

0.05



0.005

0

• Mn = (X1 + · · · + Xn)/n
0

0 2 4 6 8 100 120 140 160 180 200 • Suppose we want:

P( M f .01) ≤ .05
0.12 0.0

| n
8

− | ≥
n = 16

0.07
n = 8

0.1

0.06 • Event of interest: |Mn − f | ≥ .01
0.08

0.05

0.06 0.04

0.03

X1 + · · · + Xn
0.04

− nf
01

0.02

0.02

n
≥ .

0.01

�� �

0

� �

0

�

0 5 10 15 20 25 30 35 40 0 10 20 30 40 50 60 70

� �

1 0.06

0.9 n = 32

�
��X1 + Xn

√
· · · + − nf

��� .01 n
0.05

0.8

0.7

√
nσ

≥
σ

0.04

0.6

0.5 0.03

�� �

0.4

�

0.02
0.3

0.2

0.01

0.1

P(|Mn − f | ≥ .01) ≈ P(|Z| ≥ .01
√

n/σ)
0 0
0 1 2 3 4 5 6 7 30 40 50 60 70 80 90 100 ≤ P(|Z| ≥ .02

√
n)

n =2
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Apply to binomial The 1/2 correction for binomial

approximation
• Fix p, where 0 < p < 1

• P(Sn ≤ 21) = P(Sn < 22),
• Xi: Bernoulli(p) because Sn is integer

• Sn = X1 + · · · + Xn: Binomial(n, p) • Compromise: consider P(Sn ≤ 21.5)

– mean np, variance np(1− p)

CDF of �
Sn − np

•
np(1 p)

−→ standard normal
−

Example
18 19 20 21 22

• n = 36, p = 0.5; find P(Sn ≤ 21)

• Exact answer:

�21 �36� �1�36
= 0.8785

k 2k=0

De Moivre–Laplace CLT (for binomial) Poisson vs. normal approximations of

the binomial• When the 1/2 correction is used, CLT
can also approximate the binomial p.m.f.
(not just the binomial CDF) • Poisson arrivals during unit interval equals:

sum of n (independent) Poisson arrivals
P(Sn = 19) = P(18.5 ≤ Sn ≤ 19.5) during n intervals of length 1/n

– Let n→∞, apply CLT (??)
18.5 ≤ Sn ≤ 19.5 ⇐⇒

– Poisson=normal (????)
18.5− 18 Sn − 18 19.5− 18

3
≤

3
≤

3
⇐⇒

.17 ≤ Z • Binomial( )
n ≤ n, p0 0.5

– p fixed, n→∞: normal
P(Sn = 19) ≈ P(0.17 ≤ Z ≤ 0.5)

– np fixed, n→∞, p→ 0: Poisson

= P(Z ≤ 0.5)−P(Z ≤ 0.17) • p = 1/100, n = 100: Poisson

= 0.6915− 0.5675 • p = 1/10, n = 500: normal

= 0.124

• Exact answer:
�36� �1

1251
19 2

�36
= 0.
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LECTURE 21 Types of Inference models/approaches

Model building versus inferring unkno• Readings: Sections 8.1-8.2
• wn

variables. E.g., assume X = aS + W
– Model building:

“It is the mark of truly educated people
know “signal” S, observe X, infer a

to be deeply moved by statistics.” – Estimation in the presence of noise:
(Oscar Wilde) know a, observe X, estimate S.

Model
• Hypothesis testing: unknown takes one of

Reality
(e.g., customer arrivals) (e.g., Poisson) few possible values; aim at small

probability of incorrect decision
Data • Estimation: aim at a small estimation error

• Design & interpretation of experiments

– polling, medical/pharmaceutical trials. . .
• Classical statistics:

N
• Netflix competition • Finance

θ X Θ̂
pX(x; θ) Estimator

objects
2 1 4 5

5 4 ? 1 3

3 5 2

4 ? 5 3 ?
θ: unknown parameter (not a r.v.)

4 1 3 5

2 1 ? 4sr 1 5 5 4
E.g., θ = mass of electron

o 2 ? 5 ? 4s
n 3 3 1 5 2 1

◦

e 3 1 2 3s

4 5 1 3
• Bayesian: Use priors & Bayes rule

3 3 ? 5

2 ? 1 1

5 2 ? 4 4 N
1 3 1 5 4 5

1 2 4 5 ?

Θ X Θ̂
p x Estimator

Signal processing X|Θ( | θ)
•

pΘ(θ)

– Tracking, detection, speaker identification,. . .

Bayesian inference: Use Bayes rule Estimation with discrete data

• Hypothesis testing

– discrete data fΘ(θ) pX Θ(x θ)
fΘ X(θ

|

pΘ(θ) pX
|

pΘ X(θ x) =
|Θ(x

| x) =
|

| θ) pX(x)
| |

pX(x)
pX(x) =

∫
fΘ(θ)pX Θ(x | θ) dθ|

– continuous data

pΘ(θ) fX Θ(x θ)
p Example:Θ X(θ

|
| x) =

|
| fX(x)

•

– Coin with unknown parameter θ

– Observe X heads in n tosses

• Estimation; continuous data
• What is the Bayesian approach?

fΘ(θ) fX Θ(x | θ) – Want to find fΘ|X(θ | x)
fΘ|X(θ | x) =

|
fX(x) – Assume a prior on Θ (e.g., uniform)

Zt = Θ0 + tΘ1 + 2t Θ2

Xt = Zt + Wt, t = 1,2, . . . , n

Bayes rule gives:

fΘ0,Θ1,Θ2|X1,...,X (θ
n 0, θ1, θ2 | x1, . . . , xn)

Estimator
Y Θ̂

1

Estimator
YX

N

Θ̂

pY |X(· | ·)

X̂

Θ̂

pY |X(· | ·)

X̂

θ

Θ̂

pY |X(y | x)

X̂

θ

pY (y ; θ)

N

Θ̂

pY |X(y | x)

X̂

θ

pY (y ; θ)

Θ̂

pY |X(y | x)

X̂

θ

pY (y ; θ)

pX(x)

Θ̂

pY |X(y | x)

X̂

θ

pY (y ; θ)

pX(x)

X ∈ {0,1}

W ∼ fW (w)

Y = X + W

Matrix Completion

! Partially observed matrix: goal to predict the

unobserved entries

measurement

Sample Applications

• Polling
– Design of experiments/sampling methodologies
– Lancet study on Iraq death toll

• Medical/pharmaceutical trials

• Data mining
– Netflix competition

• Finance

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ + W

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ + W

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ + W

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ + W

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Estimator

Θ

pΘ(θ)

N

pX|Θ(x | θ)

Θ̂

Estimator

Θ

pΘ(θ)

pX|Θ(x | θ)

X

Θ̂

Estimator

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ + W

fΘ(θ) 1/6 4 10 θ

Θ

pΘ(θ)

N

pX|Θ(x | θ) pX(x; θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ + W

fΘ(θ) 1/6 4 10

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Estimator

Θ

pΘ(θ)

N

pX|Θ(x | θ)

Θ̂

Estimator

Θ

pΘ(θ)

N

X

Θ̂

Estimator

Θ

pΘ(θ)

pX|Θ(x | θ)

X

Θ̂

Estimator

Θ

N

pX|Θ(x | θ)

X

Θ̂

Estimator

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

Graph of S&P 500 index removed
due to copyright restrictions.
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Output of Bayesian Inference Least Mean Squares Estimation

• Posterior distribution: • Estimation in the absence of information

– pmf pΘ|X(· | x) or pdf fΘ ( x)|X · |

fΘ(θ)

1/6

• If interested in a single answer: 4 10 θ

– Maximum a posteriori probability (MAP):
find estimate c, to:

◦ pΘ X(θ∗ | x) = maxθ pΘ|X(θ | x)
•

|
2

minimizes probability of error; minimize E
[
(Θ− c)

often used in hypothesis testing

]

Optimal estimate: c = E[Θ]◦ fΘ x|X(θ∗ | x) = maxθ fΘ|X(θ
•| )

• Optimal mean squared error:
– Conditional expectation:

(Θ [Θ])2E E = Var(Θ)
E[Θ | X = y] =

∫
θfΘ|X(θ dθ

[
−| x)

]

– Single answers can be misleading!

LMS Estimation of Θ based on X LMS Estimation w. several measurements

• Two r.v.’s Θ, X • Unknown r.v. Θ

• we observe that X = x • Observe values of r.v.’s X1, . . . , Xn

– new universe: condition on X = x
• Best estimator: E[Θ

2
| X1, . . . , Xn]

• E
• Can be hard to

c

[
(Θ− c) | X = x

]
is minimized by

compute/implement
=

[ – involves multi-dimensional integrals, etc.
• E (Θ− E[Θ | X = x])2 | X = x

]

≤ E[(Θ− g(x))2 | X = x]

◦ E
[
(Θ− E[Θ | − g( 2X])2 | X

]
≤ E

[
(Θ X)) | X

]

◦ E
[
(Θ− E[Θ | ])2

]
≤ 2X E

[
(Θ− g(X))

]

E[Θ | X] minimizes E
[
(Θ− (X))2g

over all estimators g(·)

]

E s t i m a t io n w i t h discr e t e d a t a

f  | X (  | x ) =
f  (  ) p X |  ( x |  )

p X ( x )

p X ( x ) =
 

f  (  ) p X |  ( x |  ) d  

E x a m ple :

Estimator
Y  ̂

1

Estimator
YX

N

 ̂

pY | X ( · | · )

X̂

 ̂

pY | X ( · | · )

X̂

 

 ̂

pY | X ( y | x )

X̂

 

pY ( y ;  )

N

 ̂

pY | X ( y | x )

X̂

 

pY ( y ;  )

 ̂

pY | X ( y | x )

X̂

 

pY ( y ;  )

p X ( x )

 ̂

pY | X ( y | x )

X̂

 

pY ( y ;  )

p X ( x )

X  { 0 , 1 }

W  p W ( w )

Y = X + W

 ̂

pY | X ( y | x )

X̂

 

pY ( y ;  )

p X ( x )

X  { 0 , 1 }

W  p W ( w )

Y = X + W
+

 ̂

pY | X ( y | x )

X̂

 

pY ( y ;  )

p X ( x )

X  { 0 , 1 }

W  f W ( w )

Y = X + W

object at unknown location X

sensors

p X |  ( 1 |  ) =

= P ( se nsor i “ se nses ” t h e o b j e c t |  =  )

= h ( d is t a n c e o f  f r o m se nsor i )

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ + W

fΘ(θ) 4 10 θ

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ + W

fΘ(θ) 1/6 10 θ

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ + W

fΘ(θ) 1/6 4 θ

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W  fW (w) Θ  {0,1} X = Θ + W

fΘ(θ) 1/6 4 10 θ

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ + W

fΘ(θ) 1/6 4 10 θ

Θ

pΘ (θ )

N

pX |Θ (x | θ )

X

Θ̂

E s t i m a t or

W ∼ fW (w ) Θ ∈ { 0, 1 } X = Θ + W

fΘ (θ ) 1 / 6 4 1 0

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ + W

1/6 4 10 θ
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LECTURE 22 fΘ(θ)

• Readings: pp. 225-226; Sections 8.3-8.4 1/6

4 10 θ

Topics

• fX Θ(x | θ)
(Bayesian) Least means squares (LMS) |

estimation 1/2

• (Bayesian) Linear LMS estimation ·

θ − 1 θ +1
Θ X Θ̂ = g(Estimator X)

fX Θ(x θ)| |
g( )

fΘ(θ)
·

θ
x 

10

• MAP estimate: θ̂ maximizes fΘ|X(MAP θ | x)

• LMS estimation:

– Θ̂ = E[Θ | X] minimizes (Θ− g( ))2E X

over all estimators g(·)

� �

4

– for any x, θ̂ = E[Θ | X = x]

minimizes (Θ− )̂2E θ

over a

�
| X = x

x
ll estimates θ̂

�

3 5 9 11 y 

Conditional mean squared error Some properties of LMS estimation

• E[(Θ− E[Θ | ])2X | X = x] – Estimator: Θ̂ = E[Θ | X]

– same as Var(Θ | X = x): variance of the – Estimation error: Θ̃ = Θ̂−Θ

conditional distribution of Θ

θ
x • E[Θ̃] = 0 E[Θ̃ X = x] = 0

10
|

• E[Θ̃h(X)] = 0, for any function h

• cov(Θ̃, Θ̂) = 0
4

• Since Θ = Θ̂

x
− Θ̃:

3 5 9 11 y var(Θ) = var(Θ̂) + var(Θ̃)

x 

|
(

|
10 Var Θ X = x):

onal distr
|
ibution of

4

x
3 5 9 11 y 

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Θ

pΘ(θ)

N

pX|Θ(x | θ)

Θ̂

Estimator

fΘ(θ)

g( · )

Θ̂ = g(X)

fX|Θ(x | θ)

g( · )

Θ̂ = g(X)

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

fΘ(θ)

fX|Θ(x | θ)

Θ̂ = g(X)

fΘ(θ)

fX|Θ(x | θ)

g( )

fΘ(θ)

fX|Θ(x | θ)

g( · )

Θ̂ = g(X)

1/2

θ − 1

θ +1

fΘ(θ)

fX|Θ(x | θ)

g( · )

Θ̂ = g(X)

1/2

θ − 1

θ +1

fΘ(θ)

fX|Θ(x | θ) x

g( · )

Θ̂ = g(X)

1/2

θ − 1

θ +1

fΘ(θ)

fX|Θ(x | θ) x

g( · )

Θ̂ = g(X)

1/2

θ − 1

θ +1

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ+W

fΘ(θ) 1/6 4 10 θ
x 

4

10

3 5 9 11 y 

fΘ(θ)

fX|Θ(x | θ) x

g( · )

Θ̂ = g(X)

1/2

θ − 1

θ +1

Θ

pΘ(θ)

N

pX|Θ(x | θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ+W

fΘ(θ) 1/6 4 10 θ
x 

4

10

3 5 9 11 y 

fΘ(θ)

fX|Θ(x | θ) x

g( · )

Θ̂ = g(X)

1/2

θ − 1

θ +1

E s t i m a t io n w i t h discr e t e d a t a

f  | X (  | x ) =
f  (  ) p X |  ( x |  )

p X ( x )

p X ( x ) =
 

f  (  ) p X |  ( x |  ) d  

E x a m ple :
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object at unknown location X

sensors

p X |  ( 1 |  ) =

= P ( se nsor i “ se nses ” t h e o b j e c t |  =  )

= h ( d is t a n c e o f  f r o m se nsor i )
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fΘ(θ) 1/6 10 θ
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W ∼ fW (w) Θ ∈ {0,1} X = Θ+W

fΘ(θ) 1/6 4 θ
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W  fW (w) Θ  {0,1} X = Θ+W
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Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ+W

fΘ(θ) 1/6 4 10 θ

Θ

pΘ (θ )
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pX |Θ (x | θ )

X

Θ̂

E s t i m a t or

W ∼ fW (w ) Θ ∈ { 0, 1 } X = Θ + W

fΘ (θ ) 1 / 6 4 1 0
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Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ+W

1/6 4 10 θ
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Conditional mean squared error

• E[(Θ− E[Θ X])2 X = x]

– same as variance of the
conditi Θ

Predicting X based on Y

• Two r.v.’s X, Y

• we observe that Y = y

– new universe: condition on Y = y

• E
�
(X − c)2 | Y = y

�
is minimized by

c =

• View predictor as a function g(y)

• E[X | Y ] minimizes

E[(X − g(Y ))2]

over all predictors g(·)

44



Linear LMS Linear LMS properties

• Consider estimators of Θ,
Cov(X,Θ)

Θ̂ˆ L = E[Θ] + (of the form Θ = aX + Xb
var(X)

− E[X])

• Minimize E
�
(Θ− − b)2aX

�
[(

2 2
)

2E Θ̂L −Θ) ] = (1− ρ σΘ

• Best choice of a,b; best linear estimator:
Linear LMS with multiple data

Cov(X,Θ)
Θ̂L = E[Θ] + (X − E[X])

var(X) • Consider estimators of the form:

θ Θ̂ = a1X1 + · · ·+ anXn + b
x 

10
• Find best choices of a1, . . . , an, b

• Minimize:

E[( + · · ·+ + −Θ)
2a1X1 anXn b ]

• Set derivatives to zero

4 linear system in b and the ai

• Only means, variances, covariances matter

x
3 5 9 11 y 

The cleanest linear LMS example Big picture

• Standard examples:Xi = Θ+Wi, Θ,W1, . . . ,Wn independent

Θ ∼ 2 ∼ 0 2µ, σ
0

Wi , σi – Xi uniform on [0, θ];

2µ/σ +
0

Θ̂ =
i

L n

�n
2 uniform prior on θ

Xi/σi
=1

� – Xi Bernoulli(p);
1

2/σi uniform (or Beta) prior on p
i=0

(weighted average of µ,X1, . . . , Xn) – Xi normal with mean θ, known variance 2σ ;

normal prior on θ;• If all normal, Θ̂L = E[Θ | X1, . . . , Xn]
Xi = Θ+Wi

• Estimation methods:

Choosing Xi in linear LMS – MAP

• E[Θ | X] is the same as E[Θ | 3X ] – MSE

• Linear LMS is different: – Linear MSE

◦ Θ̂ = + ver us Θ̂ 3aX b s = aX + b

◦ Also consider Θ̂ = 3a1X + 2a2X + a3X + b
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Θ̂ = g(X)

fΘ(θ)

fX|Θ(x | θ)

g( · )
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LECTURE 23 Classical statistics

• Readings: Section 9.1 N

(not responsible for t-based confidence θ X Θ̂
pX(x; θ) Estimator

intervals, in pp. 471-473)

also for vectors X and θ:
• Outline

•
pX ,...,X (x1, . . . , xn; , . . . , θ

1 n
θ1 m)

– Classical statistics
These are NOT conditional probabilities;

– Maximum likelihood (ML) estimation •
θ is NOT random

– Estimating a sample mean
– mathematically: many models,

– Confidence intervals (CIs)
one for each possible value of θ

– CIs using an estimated variance

• Problem types:

– Hypothesis testing:
H0 : θ = 1/2 versus H1 : θ = 3/4

– Composite hypotheses:
H0 : θ = 1/2 versus H1 : θ = 1/2

– Estimation: design an estimator Θ̂,
to keep estimation error Θ̂− θ small

Maximum Likelihood Estimation Desirable properties of estimators

(should hold FOR ALL θ !!!)• Model, with unknown parameter(s):
X ∼ pX(x; θ)

Unbiased: E[Θ̂n] = θ

• Pick θ that “makes data most likely”
•

– exponential example, with n = 1:
θ̂ML = argmax pX(x; θ) E[1/X1] = ∞ �= θ

θ

(biased)

• Compare to Bayesian MAP estimation:
Consistent: Θ̂n θ (in probability)

θ̂MAP = argmax pΘ
θ

|X(θ | x)
• →

– exponential example:

p (x|θ)p (θ) (X1 + +Xn)/n E[X] = 1/θ
X Θ Θ

θ̂MAP = argmax
| · · · →

θ p (x) – can use this to show that:
X

Θ̂n = n/(X1 + +Xn) 1/E[X] = θ

• Example: X1, . . . , Xn: i.i.d., exponential(θ)
· · · →

“Small” mean d error (MSE)
n

max
�

square

θx

•
θe

− i

θ [(Θ̂− θ)2E ] = var(Θ̂− θ) + (E[Θ̂− θ])2
i=1

= var(Θ̂) as)2

θ

� + (bi
n

max n log θ − θ

i

�
xi

=1

�

n n
θ̂ Θ̂ML = n =

x1 + · · ·+ xn X1 + · · ·+Xn
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W ∼ fW (w) Θ ∈ {0,1} X = Θ+W

fΘ(θ) 1/6 4 10 θ

Θ

pΘ(θ)

N

pX|Θ(x | θ) pX(x; θ)

X

Θ̂

Estimator

W ∼ fW (w) Θ ∈ {0,1} X = Θ+W

fΘ(θ) 1/6 4 10

�
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Estimate a mean Confidence intervals (CIs)

• 2 An estimate Θ̂ may not be informative
X1, . . . , Xn: i.i.d., mean θ, variance σ

• n

enough
Xi = θ +Wi

• An 1− α confidence interval
W nc 2

i: i.i.d., mean, 0, varia e σ +is a (random) interval [Θ̂−
n , Θ̂n ],

X Xn
= s ean = Mn = s.t. +Θ̂ 1 +

n ample m
· · ·+

P(Θ̂ Θ̂n
−

n

≤ θ ≤ n ) ≥ 1− α, ∀ θ

– often α = 0.05, or 0.25, or 0.01

Properties: – interpretation is subtle

• E[Θ̂n] = θ (unbiased) • CI in estimation of the mean
Θ̂n = (X1 + · · ·+X

• WLLN: Θ̂
n)/n

n → θ (consistency)
– normal tables: Φ(1.96) = 1

• MSE: 2
− 0.05/2

σ /n

P
�|Θ̂n − θ|

96
n

≤ 1. .
σ

√
�
≈ 0 95 (CLT)

/

• Sample mean often turns out to also be 1.96σ 1.96σ
P Θ̂ θ Θ̂ + 0.95the ML estimate. n− √ n

n
≤ ≤ √

n
≈

E.g., if 2
Xi ∼ N(θ,σ ), i.i.d.

� �

More generally: let z be s.t. Φ(z) = 1−α/2

�
zσ zσ

P Θ̂n − √ θ
n
≤ ≤ Θ̂n + √

n

�
≈ 1− α

The case of unknown σ

• Option 1: use upper bound on σ

– if Xi Bernoulli: σ ≤ 1/2

• Option 2: use ad hoc estimate of σ

– if Xi Bernoulli(θ): σ̂ =
�
Θ̂(1− Θ̂)

• Option 3: Use generic estimate
of the variance

– Start from 2
σ = E[(Xi − θ)2]

σ̂
2 1 n

n =
�

(Xi
n

i=1
− 2

θ) → 2
σ

(but do not know θ)

Ŝ
2 1 n

n =
�

(X − ˆ
i Θn)2

n− 1
i=1

→ 2
σ

(unbiased: E[Ŝ2
n] =

2
σ )
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LECTURE 24 Review

Maximum likeliho d estimation• Reference: Section 9.3 • o

– Have model with unknown parameters:

• Course Evaluations (until 12/16) X ∼ pX(x; θ)

http://web.mit.edu/subjectevaluation – Pick θ that “makes data most likely”

max pX(x; θ)
θ

– Compare to Bayesian MAP estimation:
Outline

p
• X Θ(x θ)pΘ(θ)

Review max pΘ X(θ max
|

θ
| | x) or

|
θ pY (y)

– Maximum likelihood estimation
Sample mean estimate of θ = E[X]

– Confidence intervals •

Θ̂n = (X1 +
Linear regression

· · ·+Xn)/n
•

• 1− α confidence interval

• Binary hypothesis testing +P(Θ̂− Θ̂n ≤ θ ≤ n ) ≥ 1− α, ∀ θ

– Types of error

• confidence interval for sample mean– Likelihood ratio test (LRT)

– let z be s.t. Φ(z) = 1− α/2
�

zσ zσ
P Θ̂n − √ θ ≤ Θ̂n +

n
≤ √

n

�
≈ 1− α

Regression Linear regression

y
Residual • Model y θ0 + θ x× ≈ 1

ˆ ˆ(xi, yi) x yi − θ0 − θ1xi × n
× min ( i θ0 θ1xi)

2
y

θ0,θ1 i=1
− −

x y = θ̂0 + θ̂1x

�

× × • Solution (set derivatives to zero):

× x1 + · · ·+ xn y1 + + yn
x = , y =

· · ·
= 0 y x n n

• Data: (x1, y1), (x2, y2), . . . , (xn, yn)
n ( )(

θ̂1 = i=1 xi

n

− x yi

(x x)2
− y)

• Model: y θ0 + θ1x

�

≈
�

i=1 i −

�n 2 θ̂0 = ˆmin ( θ
1 i) ( ) y x

yi θ0 θ x 1
θ0,θ1 =1

− −
i

− ∗

• Interpretation of the form of the solution
• One interpretation:

– Assume a model Y = θ0 + θ1X +W
Yi = θ0+ 2

θ1xi+Wi, Wi ∼ N(0,σ ), i.i.d.
W independent of X, with zero mean

– Likelihood function fX,Y θ(x, y; θ) is:| – Check that
� 1 �n cov( Y E[Y ])

c · exp − X, E
(y − θ0 − Y ) (X E[X])(

i θ1xi)
2

2 θ1 = =
− −

2σ 2i=1

�

var(X)

�

E (X − E[X])

�

– Take logs, same as (*)
– Solution formula for ˆ

� �

θ1 uses natural
– Least sq. ↔ pretend Wi i.i.d. normal estimates of the variance and covariance

476 Classical Statistical Inference Chap. 9

in the context of various probabilistic frameworks, which provide perspective and

a mechanism for quantitative analysis.

We first consider the case of only two variables, and then generalize. We

wish to model the relation between two variables of interest, x and y (e.g., years

of education and income), based on a collection of data pairs (xi, yi), i = 1, . . . , n.
For example, xi could be the years of education and yi the annual income of the

ith person in the sample. Often a two-dimensional plot of these samples indicates

a systematic, approximately linear relation between xi and yi. Then, it is natural
to attempt to build a linear model of the form

y ≈ θ0 + θ1x,

where θ0 and θ1 are unknown parameters to be estimated.

In particular, given some estimates θ̂0 and θ̂1 of the resulting parameters,

the value yi corresponding to xi, as predicted by the model, is

ŷi = θ̂0 + θ̂1xi.

Generally, ŷi will be different from the given value yi, and the corresponding

difference
ỹi = yi − ŷi,

is called the ith residual. A choice of estimates that results in small residuals

is considered to provide a good fit to the data. With this motivation, the linear

regression approach chooses the parameter estimates θ̂0 and θ̂1 that minimize

the sum of the squared residuals,

n�

i=1

(yi − ŷi)2 =

n�

i=1

(yi − θ0 − θ1xi)
2,

over all θ1 and θ2; see Fig. 9.5 for an illustration.

Figure 9.5: Illustration of a set of data pairs (xi, yi), and a linear model y =
θ̂0+θ̂1x, obtained by minimizing over θ0, θ1 the sum of the squares of the residuals
yi − θ0 − θ1xi.
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The world of linear regression The world of regression (ctd.)

• Multiple linear regression: • In practice, one also reports

– data: (xi, x�, x��, yi), i = 1, . . . , n – Confidence intervals for the θ
i i i

– model: y ≈ θ0 + θx+ θ
�
x
� + θ

��
x
�� – “Standard error” (estimate of σ)

– formulation: – 2
R , a measure of “explanatory power”

n

min
�

( 2
yi θ0 θxi θ

�
xi
�

θ
��
x
��
i )

θ,θ�,θ��
i=1

− − − −
• Some common concerns

– Heteroskedasticity• Choosing the right variables

– Multicollinearity
– model y ≈ θ0 + θ1h(x)

e.g., 2
y ≈ θ0 + θ1x – Sometimes misused to conclude causal

relations
– work with data points (yi, h(x))

– etc.
– formulation:

n

min
�

(yi − 2
θ0 − θ1h1(xi))

θ
i=1

Binary hypothesis testing Likelihood ratio test (LRT)

• Binary θ; new terminology: • Bayesian case (MAP rule): choose H1 if:
P(H1 | X = x) > P(H0 | X = x)

– null hypothesis H0:
or

X ∼ pX(x;H0) [or fX(x;H0)]
P(X = x | H1)P(H1) P(X = x H0)P(H0)

– alternative hypothesis H1: >
|

P(X = x) P(X = x)
X ∼ pX(x;H1) [or fX(x;H1)] or

P(X = x | H1) P(H0)
>

• Partition the space of possible data vectors P(X = x | H0) P(H1)
Rejection region R: (likelihood ratio test)
reject H0 iff data ∈ R

Nonbayesian version: choose H1 if
• Types of errors:

•

P(X = x;H1)
> ξ (discrete case)

– Type I (false rejection, false alarm): P(X = x;H0)
H0 true, but rejected

fX(x;H1)
> ξ (continuous case)

α(R) = P(X ∈ R ;H0) fX(x;H0)

– Type II (false acceptance, threshold ξ trades off the two types of error
missed detection):

•

– choose ξ so that P(reject H ;H ) = α
H0 false, but accepted 0 0

(e.g., α = 0.05)
β(R) = P(X �∈ R ;H1)
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LECTURE 25 Simple binary hypothesis testing

Outline

– null hypothesis H0:
• Reference: Section 9.4 X ∼ pX(x;H0) [or fX(x;H0)]

– alternative hypothesis H :• Course Evaluations (until 12/16) 1

X ∼ pX(x;H1) [or fX(x;H1)]http://web.mit.edu/subjectevaluation

– Choose a rejection region R;
reject H0 iff data R

• Review of simple binary hypothesis tests
∈

Likelihood ratio test: reject H if
– examples • 0

pX(x;H1) fX(x;H1)
• > ξ or > ξTesting composite hypotheses pX(x;H0) fX(x;H0)

– is my coin fair?
– fix false rejection probability α

– is my die fair? (e.g., α = 0.05)

– goodness of fit tests – choose ξ so that P(reject H0;H0) = α

Example (test on normal mean) Example (test on normal variance)

• n data points, i.i.d. • n data points, i.i.d.
H0: Xi ∼ N(0,1) H0: Xi ∼ N(0,1)
H1: Xi ∼ N(1,1) H1: Xi ∼ N(0,4)

• Likelihood ratio test; rejection region: • Likelihood ratio test; rejection region:

(1 n ( 2
/
√
2π) exp{− i Xi − 1) /2} (1/2

√
2π)n exp{ 2

i
ξ

− X /(2 · 4)}
(1/

√ >
i

> ξ
2π)n exp{

�

− 2
i X /2

i
} (1/

√
2π)n exp{−

�

2
i

– algebra: re ct

�
X /2

i
}

je H0 if:
�

Xi > ξ
�

– algebra: reject

�

2
H0 if > ξ

�

i

�
Xi

i

• Find ξ
� such that • Find ξ

� such that
� �n �;

�
=

� �n 2P Xi > ξ H0 α P Xi > ξ
�;H0

i=1 i=1

�
= α

– use normal tables – the distribution of 2
i X is known

i

(derived distribution

�

problem)

– “chi-square” distribution;
tables are available
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Composite hypotheses Is my die fair?

• Got S = 472 heads in n = 1000 tosses; • Hypothesis H0:
is the coin fair? P(X = i) = pi = 1/6, i = 1, . . . ,6

– H0 : p = 1/2 versus H1 : p = 1/2 • Observed occurrences of i: Ni

• Pick a “statistic” (e.g., S) • Choose form of rejection region;
chi-square test:• Pick shape of rejection region

(e.g., |S − )2n/2| > ξ) (N np
reject H0 if T = i − i

> ξ
np

i i

• Choose significance level (e.g., α = 0.05)

�

• Choose ξ so that:
• Pick critical value ξ so that:

P(reject H0;H0) = 0.05
P(reject H0;H0) = α

Using the CLT: P(T > ξ;H0) = 0.05

P(|S − 500| ≤ 31;H0) ≈ 0.95; ξ = 31 • Need the distribution of T :
(CLT + derived distribution problem)

• In our example: |S − 500| = 28 < ξ

– for large n, T has approximately
H0 not rejected (at the 5% level)

a chi-square distribution

– available in tables

Do I have the correct pdf? What else is there?

• Partition the range into bins • Systematic methods for coming up with
– npi: expected incidence of bin i shape of rejection regions

(from the pdf)

– Ni: observed incidence of bin i • Methods to estimate an unknown PDF
(e.g., form a histogram and “smooth” it

– Use chi-square test (as in die problem)
out)

• Kolmogorov-Smirnov test:
form empirical CDF, F̂ , from data • Efficient and recursive signal processing

X

• Methods to select between less or more
complex models

– (e.g., identify relevant “explanatory
variables” in regression models)

• Methods tailored to high-dimensional
unknown parameter vectors and huge
number of data points (data mining)

(http://www.itl.nist.gov/div898/handbook/) • etc. etc.. . .

• Dn = maxx |FX(x)− F̂X(x)|

• P(
√
nDn ≥ 1.36) ≈ 0.05

�
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