Massachusetts Institute of Technology

Department of Electrical Engineering \& Computer Science
6.041/6.431: Probabilistic Systems Analysis
(Fall 2010)

Problem Set 4
 Due October 6, 2010

1. Random variables X and Y have the joint PMF

$$
p_{X, Y}(x, y)=\left\{\begin{aligned}
c\left(x^{2}+y^{2}\right), & \text { if } x \in\{1,2,4\} \text { and } y \in\{1,3\}, \\
0, & \text { otherwise. }
\end{aligned}\right.
$$

(a) What is the value of the constant c ?
(b) What is $\mathbf{P}(Y<X)$?
(c) What is $\mathbf{P}(Y>X)$?
(d) What is $\mathbf{P}(Y=X)$?
(e) What is $\mathbf{P}(Y=3)$?
(f) Find the marginal PMFs $p_{X}(x)$ and $p_{Y}(y)$.
(g) Find the expectations $\mathbf{E}[X], \mathbf{E}[Y]$ and $\mathbf{E}[X Y]$.
(h) Find the variances $\operatorname{var}(X), \operatorname{var}(Y)$ and $\operatorname{var}(X+Y)$.
(i) Let A denote the event $X \geq Y$. Find $\mathbf{E}[X \mid A]$ and $\operatorname{var}(X \mid A)$.
2. The newest invention of the $6.041 / 6.431$ staff is a three-sided die with faces numbered 1,2 , and 3 . The PMF for the result of any one roll of this die is

$$
p_{X}(x)=\left\{\begin{aligned}
1 / 2, & \text { if } x=1 \\
1 / 4, & \text { if } x=2 \\
1 / 4, & \text { if } x=3 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Consider a sequence of six independent rolls of this die, and let X_{i} be the random variable corresponding to the i th roll.
(a) What is the probability that exactly three of the rolls have result equal to 3 ?
(b) What is the probability that the first roll is 1 , given that exactly two of the six rolls have result of 1 ?
(c) We are told that exactly three of the rolls resulted in 1 and exactly three resulted in 2. Given this information, what is the probability that the sequence of rolls is $121212 ?$
(d) Conditioned on the event that at least one roll resulted in 3, find the conditional PMF of the number of 3 's.
3. Suppose that X and Y are independent, identically distributed, geometric random variables with parameter p. Show that

$$
\mathbf{P}(X=i \mid X+Y=n)=\frac{1}{n-1}, \quad \text { for } i=1,2, \ldots, n-1
$$

Massachusetts Institute of Technology
 Department of Electrical Engineering \& Computer Science
 6.041/6.431: Probabilistic Systems Analysis

(Fall 2010)
4. Consider 10 independent tosses of a biased coin with a probability of heads of p.
(a) Let A be the event that there are 6 heads in the first 8 tosses. Let B be the event that the 9 th toss results in heads. Show that events A and B are independent.
(b) Find the probability that there are 3 heads in the first 4 tosses and 2 heads in the last 3 tosses.
(c) Given that there were 4 heads in the first 7 tosses, find the probability that the 2 nd head occurred during the 4th trial.
(d) Find the probability that there are 5 heads in the first 8 tosses and 3 heads in the last 5 tosses.
5. Consider a sequence of independent tosses of a biased coin at times $t=0,1,2, \ldots$ On each toss, the probability of a 'head' is p, and the probability of a 'tail' is $1-p$. A reward of one unit is given each time that a 'tail' follows immediately after a 'head.' Let R be the total reward paid in times $1,2, \ldots, n$. Find $\mathbf{E}[R]$ and $\operatorname{var}(R)$.
$\mathrm{G} 1^{\dagger}$. A simple example of a random variable is the indicator of an event A, which is denoted by I_{A} :

$$
I_{A}(\omega)= \begin{cases}1, & \text { if } \omega \in A \\ 0, & \text { otherwise }\end{cases}
$$

(a) Prove that two events A and B are independent if and only if the associated indicator random variables, I_{A} and I_{B} are independent.
(b) Show that if $X=I_{A}$, then $\mathbf{E}[X]=\mathbf{P}(A)$.

MIT OpenCourseWare
http://ocw.mit.edu

6.041 / 6.431 Probabilistic Systems Analysis and Applied Probability

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

