6.034 Quiz 3 November 14, 2007

Name	
EMail	

Circle your TA and recitation time, if any, so that we can enter your score in our records and return your quiz to you promptly.

TAs
Mike Klein
Tom Kollar
Akua Nti
Mark Seifter
Hope Lestier

Thu	
Time	Instructor
$11-12$	Kimberle Koile
$12-1$	Kimberle Koile
$1-2$	Kimberle Koile

Fri	
Time	Instructor
$12-1$	Howard Shrobe
$1-2$	Howard Shrobe
$2-3$	Howard Shrobe

Problem number	Maximum	Score	Grader
1	50		
2	50		
Total	100		

There are 10 pages in this quiz, including this one. After the $10^{\text {th }}$ page, you will find a tear-off sheet with neural net formulas and a spare drawing.

Question 1: Nearest Neighbors and ID-Trees (50 pts)

Lucy has been working hard for the credit card companies to detect fraud. They have asked her to analyze a number of classification methods to determine which one is best suited to their problem. The two quantities that they have provided her are the change in longitude from the purchase location to the registered address and the amount that the purchase is over or under the average purchase that the customer usually makes.

Part A: Nearest Neighbors (15 pts)

Lucy decides to use nearest neighbors to solve this problem and plots the fraudulent / nonfraudulent data. Squares are fraudulent and circles are non-fraudulent. Sketch the resulting decision boundary on the figure below.

It is the end of the month and Lucy's boss comes over with new data hot off the presses (the triangle). He wants Lucy to analyze whether or not the new charge is fraudulent.

What is the nearest neighbor classification of the new charge, fraudulent or non-fraudulent?
\square
She's not too sure about this classification and decides to rerun it using k-nearest neighbors for $k=3$ and then for $k=5$. Is the charge fraudulent for these values of k ?
$K=3:$
$K=5:$

Part B: Identification-trees (25 pts)

B1 The boundaries (18 pts)

Lucy now decides that she'll try to use identification trees on the data. There are three likely candidates for splitting the data: $x=0.0, x=-1.01$ and $x=1.01$. Note that the -1.01 and 1.01 values lie half-way between a square and a circle with nearby x values. Compute the average disorder for the decision boundary $x=1.01$. Your answer may contain logarithms.

Compute the average disorder for the decision boundary $x=0.0$. Again, your answer may contain logarithms.
\square
Which of the two decision boundaries, $x=0.0$ and $x=1.01$, is added first?

Sketch all of the decision boundaries on the figure below. Assume that $x=0.0$ and $x=1.01$, in the order you determined above, are the first two decision boundaries selected (this may or may not be true, but assume it is).

B2 The identification tree (7 pts)

Draw the identification tree corresponding to your decision boundaries.

What is the classification of the new charge (triangle)?

Part C: Polar coordinates ($\mathbf{1 0} \mathbf{~ p t s)}$

Lucy gets smart and decides to try a different space for each of the points. That is, she converts all of the points to polar coordinates. Sketch the data below. You may assume that r value of each point is very close to a multiple of 0.25 and that the theta value of each point is very close to a multiple of pi/4.

How many decision boundaries do we need in this case?

Draw the resulting identification tree and sketch the decision boundary on the graph above.

Question 2: Neural Networks (50 pts)

Part A: Forward Propagation and Backward Propagation (30 pts)

Lucy thinks about attacking the fraud problem with a neural net. She first reviews her knowledge of neural networks with sigmoid activation functions. She comes up with a simple example that has only one input i_{1}, two hidden nodes h_{1} and h_{2}, and two output nodes o_{1} and o_{2}. There are also two bias inputs labeled -1 . The output vector y is $y=\left[o_{1}, o_{2}\right]$. All of the units are sigmoid units, meaning that their output will be given by the sum of the weighted inputs z such that:

$$
s(z)=\frac{1}{1+e^{-z}}
$$

Don't forget that the update for weights during the learning process is:

$$
w_{i}^{\prime}=w_{i}+r \delta_{i} x_{i}
$$

For this problem assume that $r=0.1$. See the tearout sheet if you need to be reminded of the particular updates for the sigmoid activation function. Note the following table for values of the sigmoid function:

z	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95
$\mathrm{f}(\mathrm{z})$	0.60	0.63	0.65	0.66	0.67	0.68	0.69	0.7	0.71	0.72
z	-0.5	-0.55	-0.6	-0.65	-0.7	-0.75	-0.8	-0.85	-0.9	-0.95
$\mathrm{f}(\mathrm{z})$	0.40	0.37	0.35	0.34	0.33	0.32	0.31	0.3	0.29	0.28

Assuming that $i_{1}=1.0$, then what are the output values, $y_{o_{1}}$ and $y_{o_{2}}$, of the output nodes o_{1} and o_{2}. In this and other parts of the problem, you may express your answers in terms of variablefree arithmetic expressions, such as 0.9×0.9.

$$
\begin{aligned}
& y_{o_{1}}: \\
& y_{o_{2}}:
\end{aligned}
$$

Now assume that for input $i_{1}=1.0$, then the desired $y_{o_{1}}$ should be 1.0 and the desired $y_{o_{2}}$ should be 1.0. Compute delta for the output nodes o_{1} and o_{2}, e.g. $\delta_{o_{1}}$ and $\delta_{o_{2}}$.
$\delta_{o_{1}}:$
$\delta_{o_{2}}:$

Using the deltas that you just computed, what is the delta (δ) for $h_{1}, \delta_{h_{1}}$?
\square
What is the new weight from h_{1} to o_{1} ?

New weight:

What is the new weight from i_{1} to h_{1} ?

New weight:

Part B: A new neuron activation function (20 pts)

John has done a lot with neural networks and he thinks he can squeeze a little more performance out by replacing his old neuron activation function (the sigmoid) with a new neuron activation function (the hyperbolic tangent). Thus we have the following relationship:

$$
y=g(z)=\tanh (z)
$$

The derivative of this hyperbolic tangent is:

$$
g^{\prime}(z)=1-\tanh (z)^{2}
$$

Assume that we're still using the normal quality metric: $P=-\frac{1}{2}\left(y^{*}-y\right)^{2}$. John, knowing he has to derive two updates for a two-layer network (abstractly shown below) starts by deriving the update for the outer layer $w_{i j}$. See the tear-off page for more detail on backpropagation with a sigmoid activation function.

Derive the new update equation for the weight changes and deltas in the outer layer. Express your answer in a form analogous to the summary at the bottom of the tear off sheet.

Now derive the update equation for the inner weight changes and deltas. Express your answer in a form analogous to the summary at the bottom of the tear off sheet.

Backpropagation Notes

New weights depend on a learning rate and the derivative of a performance function with respect to weights:
(1) $w_{i}^{\prime}=w_{i}+r \frac{\partial P}{\partial w_{i}}$

Using the chain rule, where y_{i} designates a neuron's output:
(2) $\frac{\partial P}{\partial w_{i}}=\frac{\partial P}{\partial y_{i}} \frac{\partial y_{i}}{\partial w_{i}}$

For the standard performance function, where y^{*} is the final desired output and y is the actual final output, $P=-1 / 2 \sum\left(y^{*}-y\right)^{2}:$
(3) $\frac{\partial P}{\partial y_{i}}=\frac{\partial}{\partial y_{i}}\left(-1 / 2\left(y^{*}-y\right)^{2}\right)=\left(y^{*}-y\right)$

For a neural net, the total input to a neuron is $z=\sum w_{i} x_{i}$
(Note that x_{i} is sometimes written y_{i} to indicate that in a multilayer network, the input for one node is the output for a previous layer node)
For a sigmoid neural net, the output of a neuron, where z is the total input, is $y=s(z)=\frac{1}{1+e^{-z}}$.
Recall that the derivative $\frac{\partial y}{\partial z}=y(1-y)$.
So for the output layer of a sigmoid neural net:
(4) $\frac{\partial y_{i}}{\partial w_{i}}=\frac{\partial y}{\partial z} \frac{\partial z}{\partial w_{i}}=y(1-y) x_{i}$

Substituting (3) and (4) into (2):
(5) $\frac{\partial P}{\partial w_{i}}=\frac{\partial P}{\partial y_{i}} \frac{\partial y_{i}}{\partial w_{i}}=\left(y^{*}-y\right) y(1-y) x_{i}$

Substituting (5) into the weight equation (1):

$$
w_{i}^{\prime}=w_{i}+r\left(y^{*}-y\right) y(1-y) x_{i}
$$

\ldots which can be written in terms of δ, which is the derivative of P with respect to total input, $\frac{\partial P}{\partial z}$:

$$
w_{i}^{\prime}=w_{i}+r \delta_{i} x_{i} \text {, where } \delta_{i}=\frac{\partial P}{\partial y} \frac{\partial y}{\partial z}=\left(y^{*}-y\right) y(1-y)=y(1-y)\left(y^{*}-y\right)
$$

(Note that to change P, one only needs to substitute the new $\frac{\partial P}{\partial y}$ into this equation.)
For an inner node, we use a similar equation that takes into account the output y_{i} for that node, and the δ and w values for the next layer, where "next layer" means the neighboring nodes one layer closer to the output layer:

$$
w_{i}^{\prime}=w_{i}+r \delta_{i} x_{i}, \text { where } \delta_{i}=y_{i}\left(1-y_{i}\right) \sum \delta_{j} w_{i j}
$$ and $w_{i j}$ is the weight between layers i and j.

$$
\begin{aligned}
\text { Summary: For each layer, } w_{i}^{\prime}=w_{i}+r \delta_{i} x_{i}, \text { where for outer layer } \delta_{i} & =y(1-y)\left(y^{*}-y\right) \\
\text { inner layer } \delta_{i} & =y_{i}\left(1-y_{i}\right) \sum \delta_{j} w_{i j}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

6.034 Artificial Intelligence

Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

