6.01: Introduction to EECS I

Op-Amps

Last Time: Analyzing Circuits

Circuits are analyzed by combining three types of equations.

- KVL: sum of voltages around any closed path is zero.
- KCL: sum of currents out of any closed surface is zero.
- Element (constitutive) equations
- resistor: $\quad V=I R$
- voltage source: $\quad V=V_{0}$
- current source: $\quad I=I_{0}$

Check Yourself

How many of the following are true?

1. $v_{1}=v_{2}+v_{6}+v_{5}$
2. $v_{6}=e_{1}-e_{2}$
3. $i_{6}=\left(e_{1}-e_{2}\right) / R_{6}$
4. $i_{6}=i_{b}-i_{c}$
5. $v_{6}=\left(i_{b}-i_{c}\right) R_{6}$

Last Time: The Circuit Abstraction

Circuits represent systems as connections of elements

- through which currents (through variables) flow and
- across which voltages (across variables) develop.

Last Time: Analyzing Circuits

Many KVL and KCL equations are redundant. We looked at three methods to systematically identify a linearly independent set.

Node Voltages with Component Currents

We will study a variation of the node method (NVCC) in software lab today.

Interaction of Circuit Elements

Circuit design is complicated by interactions among the elements. Adding an element changes voltages \& currents throughout circuit.

Example: closing a switch is equivalent to adding a new element.

Buffering with Op-Amps

Interactions between elements can be reduced (or eliminated) by using an op-amp as a buffer.

This op-amp circuit produces an output voltage equal to its input voltage (8 V) while having no effect on the left part of the circuit.

Today: how to analyze and design op-amp circuits

Check Yourself

Find $\frac{V_{o}}{V_{i}}$.

1. 500
2. $\frac{1}{20}$
3. 1
4. $\frac{1}{2}$
5. none of the above

Check Yourself

How does closing the switch affect V_{o} and I_{o} ?

1. V_{o} decreases, I_{o} decreases
2. V_{o} decreases, I_{o} increases
3. V_{o} increases, I_{o} decreases
4. V_{o} increases, I_{o} increases
5. could be any of above, depending on bulb resistance

Dependent Sources

To analyze op-amps, we must introduce a new kind of element: a dependent source.

A dependent source generates a voltage or current whose value depends on another voltage or current.

Example: current-controlled current source

Dependent Sources

Dependent sources are two-ports: characterized by two equations.

Here $V_{1}=0$ and $I_{2}=-100 I_{1}$.

By contrast, one-ports (resistors, voltage sources, current sources) are characterized by a single equation.

Op-Amp

An op-amp (operational amplifier) can be represented by a voltagecontrolled voltage source.

A voltage-controlled voltage source is a two-port.

$I_{1}=0$ and $V_{2}=K V_{1}$ where K is large (typically $K>10^{5}$).

Non-inverting Amplifier

For large K, this circuit implements a non-inverting amplifier.

$$
\frac{V_{o}}{V_{i}}=\frac{R_{1}+R_{2}}{R_{1}} \geq 1
$$

$V_{o} \geq V_{i}$

The "Ideal" Op-Amp

As $K \rightarrow \infty$, the difference between V_{+}and V_{-}goes to zero.
Example:

$$
\begin{aligned}
& V_{o}=K\left(V_{+}-V_{-}\right)=K\left(V_{i}-V_{o}\right) \\
& V_{o}=\frac{K}{1+K} V_{i} \\
& V_{+}-V_{-}=V_{i}-V_{o}=V_{i}-\frac{K}{1+K} V_{i}=\frac{1}{1+K} V_{i}=\frac{1}{K} V_{o} \\
& \lim _{K \rightarrow \infty}\left(V_{+}-V_{-}\right)=0
\end{aligned}
$$

If the difference between $V+$ and V_{-}did not go to zero as $K \rightarrow \infty$ then $V_{o}=K\left(V_{+}-V_{-}\right)$could not be finite.

Op-Amp: Analysis

Example. Find $\frac{V_{o}}{V_{i}}$ for the following circuit.

$V_{+}=V_{i}$
$V_{-}=\frac{R_{1}}{R_{1}+R_{2}} V_{o}$
$V_{o}=K\left(V_{+}-V_{-}\right)=K\left(V_{i}-\frac{R_{1}}{R_{1}+R_{2}} V_{o}\right)$
$\frac{V_{o}}{V_{i}}=\frac{K}{1+\frac{K R_{1}}{R_{1}+R_{2}}}=\frac{K\left(R_{1}+R_{2}\right)}{R_{1}+R_{2}+K R_{1}} \approx \frac{R_{1}+R_{2}}{R_{1}} \quad$ (if K is large $)$

Check Yourself

For which value(s) of R_{1} and/or R_{2} is $V_{o}=V_{i}$.

1. $R_{1} \rightarrow \infty$
2. $R_{2}=0$
3. $R_{1} \rightarrow \infty$ and $R_{2}=0$
4. all of the above
5. none of the above

The "Ideal" Op-Amp

The approximation that $V_{+}=V_{-}$is referred to as the "ideal" op-amp approximation. It greatly simplifies analysis.

Example.

If $V_{+}=V_{-}$then $V_{o}=V_{i}$!

Check Yourself

Determine the output of the following circuit.

1. $V_{o}=V_{1}+V_{2}$
2. $V_{o}=V_{1}-V_{2}$
3. $V_{o}=-V_{1}-V_{2}$
4. $V_{o}=-V_{1}+V_{2}$

5 none of the above

The "Ideal" Op-Amp

The ideal op-amp approximation implies that both of these circuits function identically.

$V_{+}=V_{-} \quad \rightarrow \quad V_{o}=V_{i}!$

This sounds a bit implausible!

"Thinking" like an op-amp

This reasoning is wrong because it ignores a critical property of circuits.

For a voltage to change, charged particles must flow.
To understand flow, we need to understand continuity.

Check Yourself

Determine R so that $V_{o}=2\left(V_{1}-V_{2}\right)$.

1. $R=0$
2. $R=1$
3. $R=2$
4. $R \rightarrow \infty$
5. none of the above

Paradox

Try analyzing the voltage-controlled voltage source model.

These circuits seem to have identical responses if K is large.
Something is wrong!

Flows and Continuity

If a quantity is conserved, then the difference between what comes in and what goes out must accumulate.

If water is conserved then $\frac{d h(t)}{d t} \propto r_{i}(t)-r_{o}(t)$.

Leaky Tanks and Capacitors

Water accumulates in a leaky tank.

Charge accumulates in a capacitor.

$$
\frac{d v}{d t}=\frac{i_{i}-i_{o}}{C} \propto i_{i}-i_{o} \quad \text { analogous to } \quad \frac{d h}{d t} \propto r_{i}-r_{o}
$$

Op-Amp Model

Here is a more accurate circuit model of a $\mu \mathrm{A} 709$ op-amp.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Charge Accumulation in an Op-Amp

We can add a resistor and capacitor to "model" the accumulation of charge in an op-amp.

This is not an accurate representation of what is inside an op-amp.
This is a model of how the op-amp works.
This is an example of using circuits as a tool for modeling.

Charge Accumulation in an Op-Amp

We can add a resistor and capacitor to "model" the accumulation of charge in an op-amp.

This is not an accurate representation of what is inside an op-amp.

Op-Amp

This artwork shows the physical structure of a $\mu \mathrm{A} 709$ op-amp.

> © Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.

Dynamic Analysis of Op-Amp

If the input voltage to this circuit suddenly increases, then current will flow into the capacitor and gradually increase V_{o}.

As V_{o} increases, the difference $V_{+}-V_{-}$decreases, less current flows, and V_{o} approaches a final value equal to V_{i}.

Dynamic Analysis of Op-Amp

If the input voltage to this circuit suddenly decreases, then current will flow out of the capacitor and decrease V_{o}.

As V_{o} decreases, the $\left|V_{+}-V_{-}\right|$decreases, the magnitude of the current decreases, and V_{o} approaches a final value equal to V_{i}.

Dynamic Analysis of Op-Amp

Switching the plus and minus inputs flips these relations. Now if the input increases, current will flow out of the capacitor and decrease V_{o}.

This makes the difference between input and output even bigger!

Positive and Negative Feedback

Negative feedback (left) drives the output toward the input.
Positive feedback (right) drives the output away from the input.

Dynamic Analysis of Op-Amp

Regardless of how V_{i} changes, V_{o} changes in a direction to reduce the difference between V_{i} and V_{o}.

Dynamic Analysis of Op-Amp

Similarly, if the input decreases, current will flow into the capacitor a increase V_{o}.

As the output diverges from the input, the magnitude of the capacitor current increases, and the rate of divergence increases!

Paradox Resolved

Although both circuits have solutions with $V_{o}=V_{i}$ (large K), only the first is stable to changes in V_{i}.

Feedback to the positive input of an op-amp is unstable. Use negative feedback to get a stable result.

Check Yourself

What happens if we add third light bulb?

Closing the switch will make

1. bulb 1 brighter
2. bulb 2 dimmer
3. 1 and 2
4. bulbs $1,2, \& 3$ equally bright 5. none of the above

Check Yourself

The battery provides the power to illuminate the left bulbs. Where does the power come from to illuminate the right bulb?

Check Yourself

What will happen when the switch is closed?

1. top bulb is brightest
2. right bulb is brightest
3. right bulb is dimmest
4. all 3 bulbs equally bright
5. none of the above

Power Rails

Op-amps derive power from connections to a power supply.

Typically, the output voltage of an op-amp is constrained by the power supply:
$-V_{E E}<V_{o}<V_{C C}$.

Summary

An op-amp can be represented as a voltage-dependent voltage source.

The "ideal" op-amp approximation is $V_{+}=V_{-}$.
The ideal op-amp approximation only makes sense when the op-amp is connected with negative feedback.

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

