These solutions do not apply for the conflict exam.

Enter all answers in the boxes provided. Clearly written work will be graded for partial credit.

During the exam you may:

- read any paper that you want to
- use a calculator

You may not

- use a computer, phone or music player

For staff use:

1.	$/ 12$
2.	$/ 12$
3.	$/ 12$
4.	$/ 12$
5.	$/ 12$
6.	$/ 12$
7.	$/ 100$
8.	
total:	

1 Find the Voltage and Current (12 points).

Determine V and I in the following circuit.

$I=\square-1 \mathrm{~A}$
Use superposition.
If the current source is set to zero (replaced with an open circuit), then V would be $2 \Omega /(2 \Omega+$ $3 \Omega) \times 10 \mathrm{~V}=6 \mathrm{~V}$ and I would be $15 \mathrm{~V} /(3 \Omega+2 \Omega)=3 \mathrm{~A}$.

If the voltage source is set to zero (replaced by a short circuit), then V would be $10 \mathrm{~A} \times(2 \Omega \| 3 \Omega)=$ $10 \times(2 \times 3) /(2+3)=12 \mathrm{~V}$ and I would be $-2 \Omega /(2 \Omega+3 \Omega) \times 10 \mathrm{~A}=-4 \mathrm{~A}$.

The sums are $\mathrm{V}=6+12=18 \mathrm{~V}$ and $\mathrm{I}=3-4=-1 \mathrm{~A}$.

2 Find the Resistance (12 points).

Find the value of R so that $V_{o}=30 \mathrm{~V}$.

Enter your answer below, or enter none if no such value of R can be found.
$R=\square 6 \Omega$

By Ohm's law, the current through R is

$$
I_{R}=\frac{V_{o}}{R} .
$$

Applying KCL to the node where R joins the current source and the 3Ω resistor,

$$
\mathrm{I}_{\mathrm{R}}=10 \mathrm{~A}-\frac{\mathrm{V}_{\mathrm{o}}-15 \mathrm{~V}}{3 \Omega}
$$

Equating these, and setting $\mathrm{V}_{\mathrm{o}}=30 \mathrm{~V}$ yields $\mathrm{R}=6 \Omega$.

3 LTI SM (12 points).

Write a difference equation for each of these machines if it describes an LTI system or give a very brief reason why it does not. The input to the machine at step n is $x[n]$ and the output of the machine at step n is $\mathrm{y}[\mathrm{n}]$.

```
class MM1(sm.SM):
    startState = [0, 0]
    def getNextValues(self, state, inp):
        return ([state[1], inp], 2*state[0])
```

$$
y[n]=2 x[n-2]
$$

```
class MM2(sm.SM):
```

 startState = [0]
 def getNextValues(self, state, inp):
 return (state + [inp], sum(state))
 $$
y[n]=y[n-1]+x[n-1]
$$

class MM3(sm.SM):

startState $=0$
def getNextValues(self, state, inp):

Max is not a linear operator.

```
class MM4(sm.SM):
    startState = 0
    def getNextValues(self, state, inp):
        return (state + 1, state)
```

It is tempting to write:

$$
y[n]=y[n-1]+1
$$

but the constant term is not legal in a difference equation.

4 Op-Amp Circuit (12 points).

Determine V_{o} in the following circuit. Assume that the op-amp is ideal.

Express the left voltage source and two left-most resistors as a Thevenin equivalent, with Thevenin voltage $\frac{10}{10+15} 10 \mathrm{~V}=4 \mathrm{~V}$ and Thevenin resistance $10 \Omega \| 15 \Omega=10 \times 15 /(10+15)=6 \Omega$.

Since $\mathrm{V}_{-}=\mathrm{V}_{+}, \mathrm{V}_{-}=5 \mathrm{~V}$. So there must be $1 / 12 \mathrm{~A}$ flowing left through the two 6Ω resistors. There must be a corresponding $1 / 12 \mathrm{~A}$ flowing to the left through the 12Ω resistor, since no current enters the V_{-}input of the op-amp. V_{o} is then the sum of $\mathrm{V}_{-}=5 \mathrm{~V}$ and the 1 V across the 12Ω resistor.

5 Run Length (18 points).

One simple approach to sequence compression is called run-length encoding (RLE). A run is a subsequence of repeated entries. The idea is to represent the original sequence by a list of pairs of the form:

```
(runLength, entry)
```

For example, we could represent this list of digits:

```
[3, 3, 3, 3, 5, 5, 9, 9, 9, 3, 3]
```

by this:
$[(4,3),(2,5),(3,9),(2,3)]$
This representation is useful when there are likely to be long subsequences of repeated entries in the sequence.
In this problem, you will define a class to represent and manipulate RLE sequences.

```
class RLE:
    def __init__(self, seq):
        self.rleSeq = self.encode(seq)
    def encode(self, seq):
        # code 1
    def decode(self):
        # code 2
    def add(self, other):
        # code 3
```


5.1 Encoding

Write the definition of the encode method, which takes a list of digits and returns an RLE-encoded list.

```
def encode(self, seq):
    rle = []
    prev = None
    count = 0
    for x in seq:
        if x == prev: count = count+1
        else:
            if prev: rle.append((count, prev))
            prev = x
            count = 1
        if prev: rle.append((count, prev))
    return rle
```


5.2 Decoding

Write the definition of the decode method, which returns a list of digits corresponding to the RLE-encoded list for the class instance.

```
def decode(self):
    seq = []
    for (count, entry) in self.rleSeq:
        for i in xrange(count):
            seq.append(entry)
        return seq
```


5.3 Addition

Let's define addition on our sequences as component-wise addition. Assume that both sequences are the same number of characters when decoded.
>>> $\operatorname{RLE}([2,3,4,4,4]) \cdot \operatorname{add}(\operatorname{RLE}([2,3,3,3,4]))$
should produce a new instance of the RLE class whose content is:
$[(1,4),(1,6),(2,7),(1,8)]$
Don't try to be efficient in your solution. It's fine to decode the sequences to add them.

```
def add(self, other):
    seq1 = self.decode()
    seq2 = other.decode()
    return RLE([x + y for (x, y) in zip(seq1, seq2)])
```


6 Make it Equivalent (12 points).

Determine values of R_{1} and R_{2} in the following circuit

so that

- the Thevenin equivalent voltage $\mathrm{V}_{\mathrm{T}}=1 \mathrm{~V}$, and
- the Thevenin equivalent resistance $R_{T}=1 \Omega$.
$\mathrm{R}_{1}=\square \frac{1}{10} \Omega$
$R_{2}=\square \frac{9}{10} \Omega$

The Thevenin voltage is the open-circuit voltage:

$$
\mathrm{V}_{\mathrm{T}}=\mathrm{R}_{1} \times 10 \mathrm{~A}=1 \mathrm{~V}
$$

Thus $R_{1}=\frac{1}{10} \Omega$.
The Thevenin resistance is V_{T} over the short-circuit current:

$$
R_{T}=\frac{1 V}{\frac{R_{1}}{R_{1}+R_{2}} 10 A}=1 \Omega
$$

Solving, we get $R_{2}=\frac{9}{10} \Omega$.

7 Current from Current Sources (12 points)

Determine an expression for I_{o} in the following circuit.

$$
I_{0}=\square \frac{R_{1} I_{1}-R_{2} I_{2}}{R_{1}+R_{2}+R_{3}}
$$

Replace the part of the circuit that contains I_{1} and R_{1} with its Thevenin equivalent; then do the same with the part that contains I_{2} and R_{2} :

Now the resistors are in series, as are the voltage sources:

$$
I_{o}=\frac{R_{1} I_{1}-R_{2} I_{2}}{R_{1}+R_{2}+R_{3}}
$$

8 Poles (10 points)

Each signal below has the form

$$
s[n]=(a+b j)^{n}+(a-b j)^{n}
$$

where a and b can have values $0,0.3,0.5,0.9,1.1,-0.3,-0.5,-0.9,-1.1$. The periodic signals have a period of either 2,4 , or 8 . For each one, specify a and b.

$\mathrm{a}:-0.3 \mathrm{~b}: 0$

$\mathrm{a}: 0.9 \mathrm{~b}: 0$

$\mathrm{a}: 1.1 \mathrm{~b}: 0$

a : 0.0 b: ± 1.1

$a:-0.9 b: 0$

$\mathrm{a}: 0.9 \mathrm{~b}: \pm 0.9$;

$\mathrm{a}: 0.5 \mathrm{~b}: \pm 0.5$

$a: 0.3 b: 0$

$\mathrm{a}:-1.1 \mathrm{~b}: 0$

a : 0.0 b : ± 0.9

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

