Enter all answers in the boxes provided. Clearly written work will be graded for partial credit.

During the exam you may:

- read any paper that you want to
- use a calculator

You may not

- use a computer, phone or music player

For staff use:

1.	$/ 12$
2.	$/ 12$
3.	$/ 12$
4.	$/ 12$
5.	$/ 12$
6.	$/ 12$
7.	$/ 100$
8.	
total:	

1 Find the Voltage and Current (12 points).
Determine V and I in the following circuit.

2 Find the Resistance (12 points).

Find the value of R so that $V_{o}=30 \mathrm{~V}$.

Enter your answer below, or enter none if no such value of R can be found.
\square

3 LTI SM (12 points).

Write a difference equation for each of these machines if it describes an LTI system or give a very brief reason why it does not. The input to the machine at step n is $x[n]$ and the output of the machine at step n is $\mathrm{y}[\mathrm{n}]$.

```
class MM1(sm.SM):
    startState = [0, 0]
    def getNextValues(self, state, inp):
        return ([state[1], inp], 2*state[0])
```

class MM2(sm.SM):
startState $=$ [0]
def getNextValues(self, state, inp):
return (state + [inp], sum(state))
class MM3(sm.SM):
startState $=0$
def getNextValues (self, state, inp):
return (max(state, inp), $\max ($ state, inp))

```
class MM4(sm.SM):
    startState = 0
    def getNextValues(self, state, inp):
        return (state + 1, state)
```


4 Op-Amp Circuit (12 points).

Determine V_{o} in the following circuit. Assume that the op-amp is ideal.

$\mathrm{V}_{\mathrm{o}}=\square$

5 Run Length (18 points).

One simple approach to sequence compression is called run-length encoding (RLE). A run is a subsequence of repeated entries. The idea is to represent the original sequence by a list of pairs of the form:

```
(runLength, entry)
```

For example, we could represent this list of digits:

```
[3, 3, 3, 3, 5, 5, 9, 9, 9, 3, 3]
```

by this:
$[(4,3),(2,5),(3,9),(2,3)]$
This representation is useful when there are likely to be long subsequences of repeated entries in the sequence.

In this problem, you will define a class to represent and manipulate RLE sequences.

```
class RLE:
    def __init__(self, seq):
        self.rleSeq = self.encode(seq)
    def encode(self, seq):
        # code 1
    def decode(self):
        # code 2
    def add(self, other):
        # code 3
```


5.1 Encoding

Write the definition of the encode method, which takes a list of digits and returns an RLE-encoded list.
def encode(self, seq):

5.2 Decoding

Write the definition of the decode method, which returns a list of digits corresponding to the RLE-encoded list for the class instance.
def decode(self):

5.3 Addition

Let's define addition on our sequences as component-wise addition. Assume that both sequences are the same number of characters when decoded.

```
>>> RLE([2, 3, 4, 4, 4]).add(RLE([2, 3, 3, 3, 4]))
```

should produce a new instance of the RLE class whose content is:
$[(1,4),(1,6),(2,7),(1,8)]$
Don't try to be efficient in your solution. It's fine to decode the sequences to add them.

```
def add(self, other):
```


6 Make it Equivalent ($\mathbf{1 2}$ points).

Determine values of R_{1} and R_{2} in the following circuit

so that

- the Thevenin equivalent voltage $\mathrm{V}_{\mathrm{T}}=1 \mathrm{~V}$, and
- the Thevenin equivalent resistance $R_{T}=1 \Omega$.

7 Current from Current Sources (12 points)

Determine an expression for I_{o} in the following circuit.

8 Poles (10 points)

Each signal below has the form

$$
s[n]=(a+b j)^{n}+(a-b j)^{n}
$$

where a and b can have values $0,0.3,0.5,0.9,1.1,-0.3,-0.5,-0.9,-1.1$. The periodic signals have a period of either 2,4 , or 8 . For each one, specify a and b.

$a:-0.3 \mathrm{~b}: 0$

$\mathrm{a}: 0.9 \mathrm{~b}: 0$

$a: 0.0 b: \pm 1.1$

$a:-0.9 b: 0$

$\mathrm{a}: 0.9 \mathrm{~b}: \pm 0.9$;

$a: 0.5 b: \pm 0.5$

$\mathrm{a}: 0.3 \mathrm{~b}: 0$

$a:-1.1 \mathrm{~b}: 0$

a: 0.0 b : ± 0.9

Worksheet (intentionally blank)

MIT OpenCourseWare
http://ocw.mit.edu

6.01SC Introduction to Electrical Engineering and Computer Science

Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

