ELECTROMAGNETICS AND APPLICATIONS

Electromagnetics and Applications

- Maxwell's equations: statics, quasistatics, and wave phenomena
- Applications: wireless, media, circuits, forces and generators, computer speed, microwaves, antennas, photonics, acoustics, etc.

Mathematical Methods

• Partial differential and difference equations, phasors, vector calculus

Problem Solving Techniques

• Perturbation, boundary-value, and energy methods; duality

Academic Review

Mechanics, quantum phenomena, devices, circuits, signals, linear systems

Capstone Subject—Professional Preparation

Follow-on Subjects:

Electromagnetic waves: 6.632, Quasistatics: 6.641

ACOUSTIC ANTENNAS

ACOUSTIC ANTENNAS (2)

Antenna Gain G(θ, ϕ), Effective Area A(θ, ϕ) [m²]: $G(\theta, \phi) = \frac{P_{r}(\theta, \phi)}{(P_{t} / 4\pi r^{2})}$ $P_{received} = I(\theta, \phi) A(\theta, \phi) [W]$

Antenna (Loudspeaker, Microphone) Configurations:

L24-3

ACOUSTIC RESONATORS

RESONATOR MODAL DENSITY

Modal Density in Rectangular Resonators:

Recall:
$$f_{mnp} = c_s \sqrt{(\frac{m}{2a})^2 + (\frac{n}{2b})^2 + (\frac{p}{2d})^2}$$
 [Hz]
Each cube has volume = $c_s^{3/8V}$ where V = abd (volume of resonator)
Number of modes in $\Delta f \cong$
(Volume of shell)/(vol. of cell) \cong
 $4\pi f^2 \Delta f/[8(c_s^{3/8V})] \cong$
 $4\pi f^2 \Delta f V/c_s^3$ modes in Δf
xample:

Bathroom $3 \times 3 \times 3$ meters \Rightarrow lowest $f_{100} = c_s/2a \cong 340/6 \cong 57$ Hz Modal density at 500 Hz $\cong 4\pi \times 500^2 \times 1 \times 3^3/340^3 \cong 2$ modes/Hz How can we select just one mode when we sing a single note?

EXCITATION OF RESONATORS

TEM Resonators (with loss):

$$\begin{split} I(t) &= I_o \cos \omega_o t \\ V(\delta,t) &= V_o \cos(\omega_o t + \phi) \sin(2\pi\delta/d) \\ \phi &= 0 \text{ exactly at resonance} \\ \mathsf{P}_{\mathsf{in}}(t) &\cong I_o \mathsf{V}_o \cos^2(\omega_o t) \sin(2\pi\delta/d) \text{ [W]} \\ &= 0 \text{ at voltage nulls} \end{split}$$

Cannot excite TEM_m modes by driving current into voltage nulls! (Or by voltage sources in series at current nulls). $P_{in}(t) = 0$ in both cases.

Acoustic Resonators:

 $I[Wm^{-2}] = pu \bullet \hat{n}$

Cannot excite acoustic modes with: velocity sources at pressure nulls ($p_k = 0$), or pressure sources at velocity nulls ($v_k = 0$)

Bathroom Opera:

Mouth \approx velocity source

Place mouth near a pressure maximum of desired mode

HUMAN ACOUSTIC RESONATORS

Human Vocal Tract:

- $f_1 = c_s / \lambda_1 = c_s / 4d$ = 340/(4 × 0.16)
 - = 531 Hz

Higher Resonances:

 $f_2 = 3f_1 = 1594 \text{ Hz}$ $f_3 = 5f_1 = 2655 \text{ Hz}$

Energy Densities at Location "

At f ₁ :	$\mathbf{W}_{\mathrm{p}}\cong\mathbf{W}_{\mathrm{u}}$
At f ₂ :	$w_u >> w_p$
At f ₃ :	$w_p \ll w_u$

RESONANCE SHIFTS IN HUMAN VOICES

Human Vocal Tract:

Average force exerted by waves: Outward at maximum $|\underline{p}|$ (max w_p) Inward at maximum $|\underline{u}|$ (max w_u) (Bernoulli force)

Resonator Total Energy $w_T = nhf_o$: Pressing inward at p_{max} increases w_T and f_o (Phonon number n = constant for slow changes) Recall: pressure {N m⁻²] \propto energy density [J m⁻³]

Resonance Perturbations:

 $\frac{\Delta f}{f} = \frac{\Delta (w_p - w_u)}{w_T}$ $f_o \propto c_s \propto \sqrt{\frac{\gamma P_o}{\rho_o}} \qquad \text{Tongue position} \\ \text{determines vowel}$

$$w_p \gg w_u \text{ at } f_3$$

 $w_u \gg w_p \text{ at } f_2$
 $w_p \cong w_u \text{ at } f_1$

MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.