
LASERS

Representative applications:

Amplifiers: Broad-band communications (avoid down-conversion)

- Oscillators: Frequency/distance reference, local oscillators, illuminators, transmitters, CD/DVD players, sensors
- Blasting: Laser machining, labeling, weapons, laser fusion (pellet compression). Peak > 10^{15} W, average > 1kw; high intensity because I $\propto |\sum \overline{E}_i|^2$

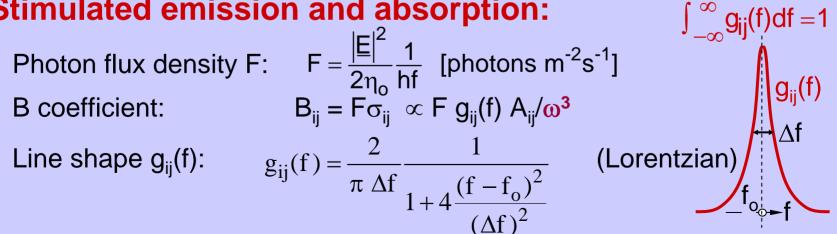
Energy States:

Chromium atoms in lattice (e.g. ruby), Erbium atoms in glass

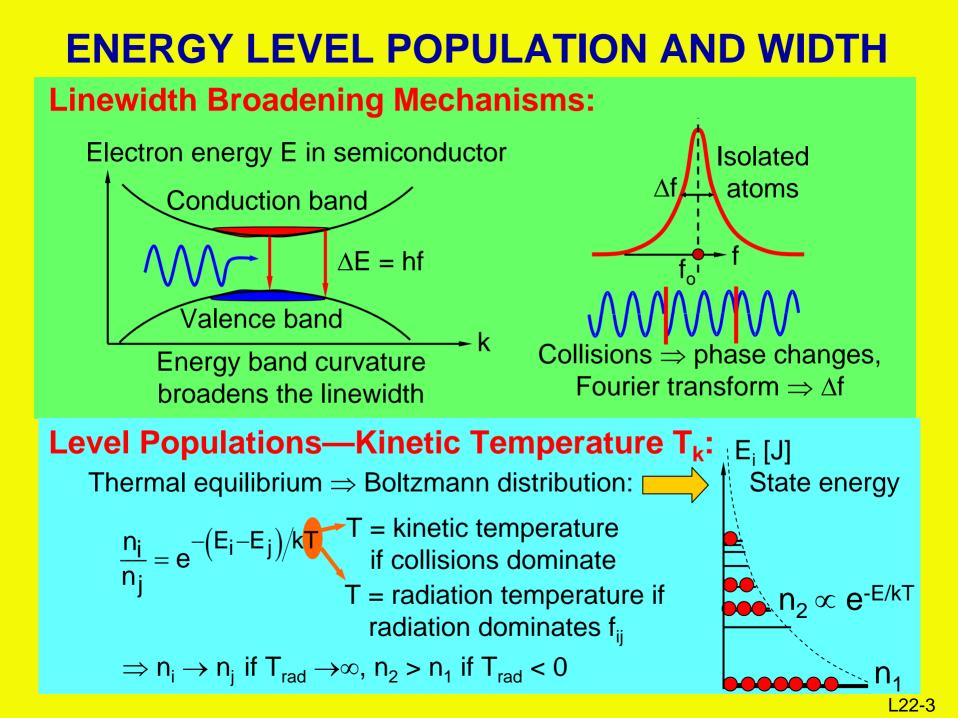
STIMULATED EMISSION AND ABSORPTION **Rate Equation:**

Assume: Two-level system, $E_2 > E_1$, and $n_i = atoms m^{-1}$ in state i

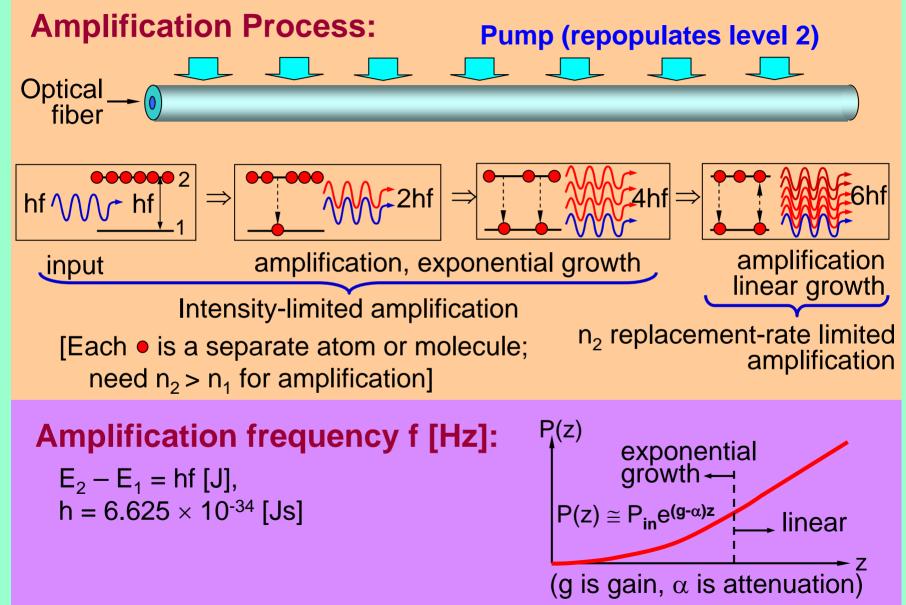
 $\frac{dn_2/dt = -An_2 - B(n_2 - n_1) [m^{-1}s^{-1}]}{(collisionless system)}$ Then: Spontaneous emission Induced emission


Spontaneous emission, states i to j:

 $A_{ii} = \omega^3 |D_{ii}|^2 (2/3h\epsilon c^3) [s^{-1}]$ (Decay time $\tau_A = A^{-1}$)


D_{ii} [C m] = quantum dipole moment (electric or magnetic)

Note: $\tau_A \propto \omega^{-3} \Rightarrow$ very brief "visible" τ 's, long microwave τ 's


Stimulated emission and absorption:

В

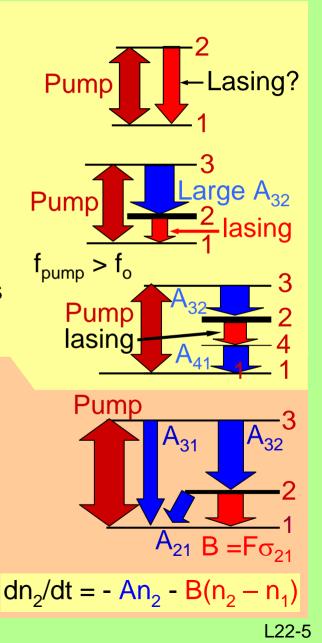
BASIC LASER AMPLIFIER PHYSICS

PUMPING OF LASERS

Two-Level Lasers:

Radiation pumping alone never yields $n_2 > n_1$ (some 2-level lasers spatially isolate n_2 group)

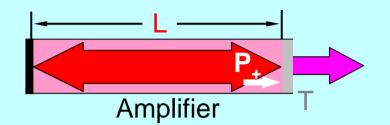
Three-Level Lasers:

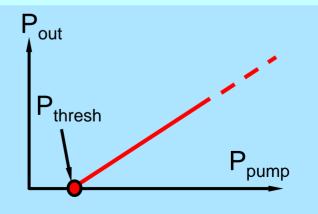

Pumping the 1-3 transition yields $n_1 \cong n_3$ Large A_{32} populates L2 so $n_2 >> n_1 \cong n_3 \cong 0$

More levels can utilize transitions with larger A's Large A_{23} fills L_2 , and large A_{41} empties L_4

Laser Power Efficiency (P_{out}/P_{in}):

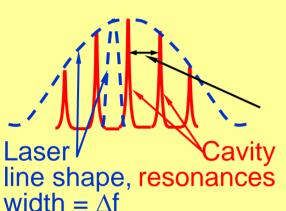
Intrinsic efficiency: B/A efficiency @ 2: A/A efficiency @ 3: Total efficiency:
$$\begin{split} \eta_{i} &= f_{L}/f_{p} \; (P \propto nhf \; [W]) < 1 \\ \eta_{B} &= B_{21}/(A_{21} + B_{21}) < 1 \\ \eta_{A} &= A_{32}/(A_{31} + A_{32}) < 1 \\ \eta &= \eta_{i}\eta_{B}\eta_{A} \end{split}$$


Pump photons s⁻¹ \propto B >> A $\propto \omega^3$, so x-ray lasers need pump power \propto hfB \propto hfA $\propto \omega^4$


LASER OSCILLATORS

Laser Oscillation:

Lossless: With perfect mirrors at both ends a lossless amplifier must oscillate and saturate


- Lossy: Round-trip gain must exceed round-trip loss (threshold condition); gain ∞ pump power P_p, so need P_p > P_{thresh}
- $\begin{array}{ll} \mbox{Mirrors:} & \mbox{Exit mirror has power transmission coefficient $T > 0$} \\ & \mbox{At threshold, Gain \cong Loss, so:} & \mbox{P}_+(1-T)e^{2(g-\alpha)L} \ge \mbox{P}_+ \\ & \Rightarrow \mbox{round-trip gain $=$ e^{2(g-\alpha)L} \ge 1/(1-T)$ for oscillation} \end{array}$
- Q-switching: Set mirror reflectivity low ⇒ round-trip gain < threshold. When laser is fully pumped, increase mirror reflectivity over threshold, yielding very large "Q-switched pulse"

LASER RESONANCES

Oscillator Resonant Frequencies f:

Resonances

$$\begin{split} \frac{m\lambda_m}{2} &= L \quad (\text{mirrors } \approx \text{ short circuits}) \\ \lambda_m &= \frac{2L}{m}, \ f_m = \frac{cm}{2LN} \quad (\text{N} = \text{refractive index}) \\ f_{i+1} - f_i &= \frac{c}{2LN} \end{split}$$

 $\simeq 10^8$ Hz (100 MHz) for 1-meter fiber;

 \simeq 50 GHz line spacing for 0.5-mm diodes

Laser Output Spectrum:

If every atom can amplify at all frequencies, then the strongest round-trip gain wins \Rightarrow line narrowing (homogeneous line broadening)

If atoms can amplify only a portion of the band, then all lines over threshold can yield output (inhomogeneous line broadening)

Line narrowing

EXAMPLES OF LASERS

Electrically Pumped Solid-State Lasers:

Forward-biased GaAs p-n junction injects carriers into conduction band
Compact (grain of sand)
~50 percent efficiency
>100 W/cm² for arrays
1 mW/micron² for diodes
1-1000 mW typical

sta

Astrophysical Masers:

Stellar Pumping:UV-IR pumped: H_2O , OH, CO, etc.Interstellar collisions:OH, etc.

Chemical lasers:

Weapons (high energy, fast)

MIT OpenCourseWare http://ocw.mit.edu

6.013 Electromagnetics and Applications Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.